ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanl1 Unicode version

Theorem sylanl1 402
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.)
Hypotheses
Ref Expression
sylanl1.1  |-  ( ph  ->  ps )
sylanl1.2  |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )
Assertion
Ref Expression
sylanl1  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ta )

Proof of Theorem sylanl1
StepHypRef Expression
1 sylanl1.1 . . 3  |-  ( ph  ->  ps )
21anim1i 340 . 2  |-  ( (
ph  /\  ch )  ->  ( ps  /\  ch ) )
3 sylanl1.2 . 2  |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )
42, 3sylan 283 1  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  adantlll  480  adantllr  481  adantl3r  512  isocnv  5802  mapxpen  6838  nqnq0pi  7412  nqpnq0nq  7427  addnqprl  7503  addnqpru  7504  pcqmul  12268  infpnlem1  12322  setsn0fun  12464
  Copyright terms: Public domain W3C validator