ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylanl1 Unicode version

Theorem sylanl1 402
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.)
Hypotheses
Ref Expression
sylanl1.1  |-  ( ph  ->  ps )
sylanl1.2  |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )
Assertion
Ref Expression
sylanl1  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ta )

Proof of Theorem sylanl1
StepHypRef Expression
1 sylanl1.1 . . 3  |-  ( ph  ->  ps )
21anim1i 340 . 2  |-  ( (
ph  /\  ch )  ->  ( ps  /\  ch ) )
3 sylanl1.2 . 2  |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )
42, 3sylan 283 1  |-  ( ( ( ph  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  adantlll  480  adantllr  481  adantl3r  512  isocnv  5934  mapxpen  7005  nqnq0pi  7621  nqpnq0nq  7636  addnqprl  7712  addnqpru  7713  pcqmul  12821  infpnlem1  12877  setsn0fun  13064  gsumfzz  13523  dvmptfsum  15393  usgr2edg  16000  usgr2edg1  16002
  Copyright terms: Public domain W3C validator