Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ax-bdsep Unicode version

Axiom ax-bdsep 13766
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4100. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
ax-bdsep.1  |- BOUNDED  ph
Assertion
Ref Expression
ax-bdsep  |-  A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Distinct variable groups:    a, b, x    ph, a, b
Allowed substitution hint:    ph( x)

Detailed syntax breakdown of Axiom ax-bdsep
StepHypRef Expression
1 vx . . . . . 6  setvar  x
2 vb . . . . . 6  setvar  b
31, 2wel 2137 . . . . 5  wff  x  e.  b
4 va . . . . . . 7  setvar  a
51, 4wel 2137 . . . . . 6  wff  x  e.  a
6 wph . . . . . 6  wff  ph
75, 6wa 103 . . . . 5  wff  ( x  e.  a  /\  ph )
83, 7wb 104 . . . 4  wff  ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
98, 1wal 1341 . . 3  wff  A. x
( x  e.  b  <-> 
( x  e.  a  /\  ph ) )
109, 2wex 1480 . 2  wff  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
1110, 4wal 1341 1  wff  A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
)
Colors of variables: wff set class
This axiom is referenced by:  bdsep1  13767
  Copyright terms: Public domain W3C validator