Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdsep | GIF version |
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4107. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
ax-bdsep.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
ax-bdsep | ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . . . 6 setvar 𝑥 | |
2 | vb | . . . . . 6 setvar 𝑏 | |
3 | 1, 2 | wel 2142 | . . . . 5 wff 𝑥 ∈ 𝑏 |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 1, 4 | wel 2142 | . . . . . 6 wff 𝑥 ∈ 𝑎 |
6 | wph | . . . . . 6 wff 𝜑 | |
7 | 5, 6 | wa 103 | . . . . 5 wff (𝑥 ∈ 𝑎 ∧ 𝜑) |
8 | 3, 7 | wb 104 | . . . 4 wff (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
9 | 8, 1 | wal 1346 | . . 3 wff ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
10 | 9, 2 | wex 1485 | . 2 wff ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
11 | 10, 4 | wal 1346 | 1 wff ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Colors of variables: wff set class |
This axiom is referenced by: bdsep1 13920 |
Copyright terms: Public domain | W3C validator |