![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdsep | GIF version |
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4136. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
ax-bdsep.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
ax-bdsep | ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . . . 6 setvar 𝑥 | |
2 | vb | . . . . . 6 setvar 𝑏 | |
3 | 1, 2 | wel 2161 | . . . . 5 wff 𝑥 ∈ 𝑏 |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 1, 4 | wel 2161 | . . . . . 6 wff 𝑥 ∈ 𝑎 |
6 | wph | . . . . . 6 wff 𝜑 | |
7 | 5, 6 | wa 104 | . . . . 5 wff (𝑥 ∈ 𝑎 ∧ 𝜑) |
8 | 3, 7 | wb 105 | . . . 4 wff (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
9 | 8, 1 | wal 1362 | . . 3 wff ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
10 | 9, 2 | wex 1503 | . 2 wff ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
11 | 10, 4 | wal 1362 | 1 wff ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Colors of variables: wff set class |
This axiom is referenced by: bdsep1 15115 |
Copyright terms: Public domain | W3C validator |