| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdsep | GIF version | ||
| Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4202. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| ax-bdsep.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| ax-bdsep | ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . . . 6 setvar 𝑥 | |
| 2 | vb | . . . . . 6 setvar 𝑏 | |
| 3 | 1, 2 | wel 2201 | . . . . 5 wff 𝑥 ∈ 𝑏 |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 1, 4 | wel 2201 | . . . . . 6 wff 𝑥 ∈ 𝑎 |
| 6 | wph | . . . . . 6 wff 𝜑 | |
| 7 | 5, 6 | wa 104 | . . . . 5 wff (𝑥 ∈ 𝑎 ∧ 𝜑) |
| 8 | 3, 7 | wb 105 | . . . 4 wff (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 9 | 8, 1 | wal 1393 | . . 3 wff ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 10 | 9, 2 | wex 1538 | . 2 wff ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 11 | 10, 4 | wal 1393 | 1 wff ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This axiom is referenced by: bdsep1 16272 |
| Copyright terms: Public domain | W3C validator |