Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdsep | GIF version |
Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4100. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
ax-bdsep.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
ax-bdsep | ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . . . 6 setvar 𝑥 | |
2 | vb | . . . . . 6 setvar 𝑏 | |
3 | 1, 2 | wel 2137 | . . . . 5 wff 𝑥 ∈ 𝑏 |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 1, 4 | wel 2137 | . . . . . 6 wff 𝑥 ∈ 𝑎 |
6 | wph | . . . . . 6 wff 𝜑 | |
7 | 5, 6 | wa 103 | . . . . 5 wff (𝑥 ∈ 𝑎 ∧ 𝜑) |
8 | 3, 7 | wb 104 | . . . 4 wff (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
9 | 8, 1 | wal 1341 | . . 3 wff ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
10 | 9, 2 | wex 1480 | . 2 wff ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
11 | 10, 4 | wal 1341 | 1 wff ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
Colors of variables: wff set class |
This axiom is referenced by: bdsep1 13767 |
Copyright terms: Public domain | W3C validator |