| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-bdsep | GIF version | ||
| Description: Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4166. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| ax-bdsep.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| ax-bdsep | ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . . . . 6 setvar 𝑥 | |
| 2 | vb | . . . . . 6 setvar 𝑏 | |
| 3 | 1, 2 | wel 2178 | . . . . 5 wff 𝑥 ∈ 𝑏 |
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 1, 4 | wel 2178 | . . . . . 6 wff 𝑥 ∈ 𝑎 |
| 6 | wph | . . . . . 6 wff 𝜑 | |
| 7 | 5, 6 | wa 104 | . . . . 5 wff (𝑥 ∈ 𝑎 ∧ 𝜑) |
| 8 | 3, 7 | wb 105 | . . . 4 wff (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 9 | 8, 1 | wal 1371 | . . 3 wff ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 10 | 9, 2 | wex 1516 | . 2 wff ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| 11 | 10, 4 | wal 1371 | 1 wff ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This axiom is referenced by: bdsep1 15895 |
| Copyright terms: Public domain | W3C validator |