Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcriota | Unicode version |
Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
Ref | Expression |
---|---|
bdcriota.bd | BOUNDED |
bdcriota.ex |
Ref | Expression |
---|---|
bdcriota | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcriota.bd | . . . . . . . . 9 BOUNDED | |
2 | 1 | ax-bdsb 13704 | . . . . . . . 8 BOUNDED |
3 | ax-bdel 13703 | . . . . . . . 8 BOUNDED | |
4 | 2, 3 | ax-bdim 13696 | . . . . . . 7 BOUNDED |
5 | 4 | ax-bdal 13700 | . . . . . 6 BOUNDED |
6 | df-ral 2449 | . . . . . . . . 9 | |
7 | impexp 261 | . . . . . . . . . . 11 | |
8 | 7 | bicomi 131 | . . . . . . . . . 10 |
9 | 8 | albii 1458 | . . . . . . . . 9 |
10 | 6, 9 | bitri 183 | . . . . . . . 8 |
11 | sban 1943 | . . . . . . . . . . . 12 | |
12 | clelsb1 2271 | . . . . . . . . . . . . 13 | |
13 | 12 | anbi1i 454 | . . . . . . . . . . . 12 |
14 | 11, 13 | bitri 183 | . . . . . . . . . . 11 |
15 | 14 | bicomi 131 | . . . . . . . . . 10 |
16 | 15 | imbi1i 237 | . . . . . . . . 9 |
17 | 16 | albii 1458 | . . . . . . . 8 |
18 | 10, 17 | bitri 183 | . . . . . . 7 |
19 | df-clab 2152 | . . . . . . . . . 10 | |
20 | 19 | bicomi 131 | . . . . . . . . 9 |
21 | 20 | imbi1i 237 | . . . . . . . 8 |
22 | 21 | albii 1458 | . . . . . . 7 |
23 | 18, 22 | bitri 183 | . . . . . 6 |
24 | 5, 23 | bd0 13706 | . . . . 5 BOUNDED |
25 | 24 | bdcab 13731 | . . . 4 BOUNDED |
26 | df-int 3825 | . . . 4 | |
27 | 25, 26 | bdceqir 13726 | . . 3 BOUNDED |
28 | bdcriota.ex | . . . . 5 | |
29 | df-reu 2451 | . . . . 5 | |
30 | 28, 29 | mpbi 144 | . . . 4 |
31 | iotaint 5166 | . . . 4 | |
32 | 30, 31 | ax-mp 5 | . . 3 |
33 | 27, 32 | bdceqir 13726 | . 2 BOUNDED |
34 | df-riota 5798 | . 2 | |
35 | 33, 34 | bdceqir 13726 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wsb 1750 weu 2014 wcel 2136 cab 2151 wral 2444 wreu 2446 cint 3824 cio 5151 crio 5797 BOUNDED wbd 13694 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdim 13696 ax-bdal 13700 ax-bdel 13703 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-iota 5153 df-riota 5798 df-bdc 13723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |