| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcriota | Unicode version | ||
| Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdcriota.bd |
|
| bdcriota.ex |
|
| Ref | Expression |
|---|---|
| bdcriota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcriota.bd |
. . . . . . . . 9
| |
| 2 | 1 | ax-bdsb 16185 |
. . . . . . . 8
|
| 3 | ax-bdel 16184 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-bdim 16177 |
. . . . . . 7
|
| 5 | 4 | ax-bdal 16181 |
. . . . . 6
|
| 6 | df-ral 2513 |
. . . . . . . . 9
| |
| 7 | impexp 263 |
. . . . . . . . . . 11
| |
| 8 | 7 | bicomi 132 |
. . . . . . . . . 10
|
| 9 | 8 | albii 1516 |
. . . . . . . . 9
|
| 10 | 6, 9 | bitri 184 |
. . . . . . . 8
|
| 11 | sban 2006 |
. . . . . . . . . . . 12
| |
| 12 | clelsb1 2334 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | anbi1i 458 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | bitri 184 |
. . . . . . . . . . 11
|
| 15 | 14 | bicomi 132 |
. . . . . . . . . 10
|
| 16 | 15 | imbi1i 238 |
. . . . . . . . 9
|
| 17 | 16 | albii 1516 |
. . . . . . . 8
|
| 18 | 10, 17 | bitri 184 |
. . . . . . 7
|
| 19 | df-clab 2216 |
. . . . . . . . . 10
| |
| 20 | 19 | bicomi 132 |
. . . . . . . . 9
|
| 21 | 20 | imbi1i 238 |
. . . . . . . 8
|
| 22 | 21 | albii 1516 |
. . . . . . 7
|
| 23 | 18, 22 | bitri 184 |
. . . . . 6
|
| 24 | 5, 23 | bd0 16187 |
. . . . 5
|
| 25 | 24 | bdcab 16212 |
. . . 4
|
| 26 | df-int 3924 |
. . . 4
| |
| 27 | 25, 26 | bdceqir 16207 |
. . 3
|
| 28 | bdcriota.ex |
. . . . 5
| |
| 29 | df-reu 2515 |
. . . . 5
| |
| 30 | 28, 29 | mpbi 145 |
. . . 4
|
| 31 | iotaint 5292 |
. . . 4
| |
| 32 | 30, 31 | ax-mp 5 |
. . 3
|
| 33 | 27, 32 | bdceqir 16207 |
. 2
|
| 34 | df-riota 5954 |
. 2
| |
| 35 | 33, 34 | bdceqir 16207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16176 ax-bdim 16177 ax-bdal 16181 ax-bdel 16184 ax-bdsb 16185 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-iota 5278 df-riota 5954 df-bdc 16204 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |