| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcriota | Unicode version | ||
| Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdcriota.bd |
|
| bdcriota.ex |
|
| Ref | Expression |
|---|---|
| bdcriota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcriota.bd |
. . . . . . . . 9
| |
| 2 | 1 | ax-bdsb 15468 |
. . . . . . . 8
|
| 3 | ax-bdel 15467 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-bdim 15460 |
. . . . . . 7
|
| 5 | 4 | ax-bdal 15464 |
. . . . . 6
|
| 6 | df-ral 2480 |
. . . . . . . . 9
| |
| 7 | impexp 263 |
. . . . . . . . . . 11
| |
| 8 | 7 | bicomi 132 |
. . . . . . . . . 10
|
| 9 | 8 | albii 1484 |
. . . . . . . . 9
|
| 10 | 6, 9 | bitri 184 |
. . . . . . . 8
|
| 11 | sban 1974 |
. . . . . . . . . . . 12
| |
| 12 | clelsb1 2301 |
. . . . . . . . . . . . 13
| |
| 13 | 12 | anbi1i 458 |
. . . . . . . . . . . 12
|
| 14 | 11, 13 | bitri 184 |
. . . . . . . . . . 11
|
| 15 | 14 | bicomi 132 |
. . . . . . . . . 10
|
| 16 | 15 | imbi1i 238 |
. . . . . . . . 9
|
| 17 | 16 | albii 1484 |
. . . . . . . 8
|
| 18 | 10, 17 | bitri 184 |
. . . . . . 7
|
| 19 | df-clab 2183 |
. . . . . . . . . 10
| |
| 20 | 19 | bicomi 132 |
. . . . . . . . 9
|
| 21 | 20 | imbi1i 238 |
. . . . . . . 8
|
| 22 | 21 | albii 1484 |
. . . . . . 7
|
| 23 | 18, 22 | bitri 184 |
. . . . . 6
|
| 24 | 5, 23 | bd0 15470 |
. . . . 5
|
| 25 | 24 | bdcab 15495 |
. . . 4
|
| 26 | df-int 3875 |
. . . 4
| |
| 27 | 25, 26 | bdceqir 15490 |
. . 3
|
| 28 | bdcriota.ex |
. . . . 5
| |
| 29 | df-reu 2482 |
. . . . 5
| |
| 30 | 28, 29 | mpbi 145 |
. . . 4
|
| 31 | iotaint 5232 |
. . . 4
| |
| 32 | 30, 31 | ax-mp 5 |
. . 3
|
| 33 | 27, 32 | bdceqir 15490 |
. 2
|
| 34 | df-riota 5877 |
. 2
| |
| 35 | 33, 34 | bdceqir 15490 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdim 15460 ax-bdal 15464 ax-bdel 15467 ax-bdsb 15468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-iota 5219 df-riota 5877 df-bdc 15487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |