Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcriota | Unicode version |
Description: A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
Ref | Expression |
---|---|
bdcriota.bd | BOUNDED |
bdcriota.ex |
Ref | Expression |
---|---|
bdcriota | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcriota.bd | . . . . . . . . 9 BOUNDED | |
2 | 1 | ax-bdsb 13857 | . . . . . . . 8 BOUNDED |
3 | ax-bdel 13856 | . . . . . . . 8 BOUNDED | |
4 | 2, 3 | ax-bdim 13849 | . . . . . . 7 BOUNDED |
5 | 4 | ax-bdal 13853 | . . . . . 6 BOUNDED |
6 | df-ral 2453 | . . . . . . . . 9 | |
7 | impexp 261 | . . . . . . . . . . 11 | |
8 | 7 | bicomi 131 | . . . . . . . . . 10 |
9 | 8 | albii 1463 | . . . . . . . . 9 |
10 | 6, 9 | bitri 183 | . . . . . . . 8 |
11 | sban 1948 | . . . . . . . . . . . 12 | |
12 | clelsb1 2275 | . . . . . . . . . . . . 13 | |
13 | 12 | anbi1i 455 | . . . . . . . . . . . 12 |
14 | 11, 13 | bitri 183 | . . . . . . . . . . 11 |
15 | 14 | bicomi 131 | . . . . . . . . . 10 |
16 | 15 | imbi1i 237 | . . . . . . . . 9 |
17 | 16 | albii 1463 | . . . . . . . 8 |
18 | 10, 17 | bitri 183 | . . . . . . 7 |
19 | df-clab 2157 | . . . . . . . . . 10 | |
20 | 19 | bicomi 131 | . . . . . . . . 9 |
21 | 20 | imbi1i 237 | . . . . . . . 8 |
22 | 21 | albii 1463 | . . . . . . 7 |
23 | 18, 22 | bitri 183 | . . . . . 6 |
24 | 5, 23 | bd0 13859 | . . . . 5 BOUNDED |
25 | 24 | bdcab 13884 | . . . 4 BOUNDED |
26 | df-int 3832 | . . . 4 | |
27 | 25, 26 | bdceqir 13879 | . . 3 BOUNDED |
28 | bdcriota.ex | . . . . 5 | |
29 | df-reu 2455 | . . . . 5 | |
30 | 28, 29 | mpbi 144 | . . . 4 |
31 | iotaint 5173 | . . . 4 | |
32 | 30, 31 | ax-mp 5 | . . 3 |
33 | 27, 32 | bdceqir 13879 | . 2 BOUNDED |
34 | df-riota 5809 | . 2 | |
35 | 33, 34 | bdceqir 13879 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wsb 1755 weu 2019 wcel 2141 cab 2156 wral 2448 wreu 2450 cint 3831 cio 5158 crio 5808 BOUNDED wbd 13847 BOUNDED wbdc 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdim 13849 ax-bdal 13853 ax-bdel 13856 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-iota 5160 df-riota 5809 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |