HomeHome Intuitionistic Logic Explorer
Theorem List (p. 148 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14701-14800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremqtopbas 14701 The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
 |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
 
Theoremretopbas 14702 A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
 |- 
 ran  (,)  e.  TopBases
 
Theoremretop 14703 The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
 |-  ( topGen `  ran  (,) )  e.  Top
 
Theoremuniretop 14704 The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.)
 |- 
 RR  =  U. ( topGen `
  ran  (,) )
 
Theoremretopon 14705 The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( topGen `  ran  (,) )  e.  (TopOn `  RR )
 
Theoremretps 14706 The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.)
 |-  K  =  { <. (
 Base `  ndx ) ,  RR >. ,  <. (TopSet `  ndx ) ,  ( topGen `  ran  (,) ) >. }   =>    |-  K  e.  TopSp
 
Theoremiooretopg 14707 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  e.  ( topGen `  ran  (,) ) )
 
Theoremcnmetdval 14708 Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremcnmet 14709 The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
 |-  ( abs  o.  -  )  e.  ( Met `  CC )
 
Theoremcnxmet 14710 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( abs  o.  -  )  e.  ( *Met `  CC )
 
Theoremcntoptopon 14711 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcntoptop 14712 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  Top
 
Theoremcnbl0 14713 Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,) R ) )  =  ( 0 (
 ball `  D ) R ) )
 
Theoremcnblcld 14714* Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,] R ) )  =  { x  e. 
 CC  |  ( 0 D x )  <_  R } )
 
Theoremcnfldms 14715 The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  MetSp
 
Theoremcnfldxms 14716 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  *MetSp
 
Theoremcnfldtps 14717 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  TopSp
 
Theoremcnfldtopn 14718 The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  =  ( MetOpen `  ( abs  o. 
 -  ) )
 
Theoremcnfldtopon 14719 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcnfldtop 14720 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  Top
 
Theoremunicntopcntop 14721 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  =  U. ( MetOpen `  ( abs  o.  -  ) )
 
Theoremunicntop 14722 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  =  U. ( TopOpen ` fld )
 
Theoremcnopncntop 14723 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  e.  ( MetOpen `  ( abs  o.  -  )
 )
 
Theoremcnopn 14724 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  e.  ( TopOpen ` fld )
 
Theoremreopnap 14725* The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
 |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen `  ran  (,) )
 )
 
Theoremremetdval 14726 Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremremet 14727 The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( Met `  RR )
 
Theoremrexmet 14728 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( *Met `  RR )
 
Theorembl2ioo 14729 A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (
 ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B ) ) )
 
Theoremioo2bl 14730 An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  =  ( ( ( A  +  B )  /  2 ) (
 ball `  D ) ( ( B  -  A )  /  2 ) ) )
 
Theoremioo2blex 14731 An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  e.  ran  ( ball `  D ) )
 
Theoremblssioo 14732 The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |- 
 ran  ( ball `  D )  C_  ran  (,)
 
Theoremtgioo 14733 The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   &    |-  J  =  (
 MetOpen `  D )   =>    |-  ( topGen `  ran  (,) )  =  J
 
Theoremtgqioo 14734 The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
 |-  Q  =  ( topGen `  ( (,) " ( QQ 
 X.  QQ ) ) )   =>    |-  ( topGen `  ran  (,) )  =  Q
 
Theoremresubmet 14735 The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
 |-  R  =  ( topGen `  ran  (,) )   &    |-  J  =  (
 MetOpen `  ( ( abs 
 o.  -  )  |`  ( A  X.  A ) ) )   =>    |-  ( A  C_  RR  ->  J  =  ( Rt  A ) )
 
Theoremtgioo2cntop 14736 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( topGen `  ran  (,) )  =  ( Jt  RR )
 
Theoremrerestcntop 14737 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
Theoremtgioo2 14738 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( topGen `
  ran  (,) )  =  ( Jt  RR )
 
Theoremrerest 14739 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.)
 |-  J  =  ( TopOpen ` fld )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
Theoremaddcncntoplem 14740* Lemma for addcncntop 14741, subcncntop 14742, and mulcncntop 14743. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |- 
 .+  : ( CC 
 X.  CC ) --> CC   &    |-  (
 ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  b ) )  < 
 y  /\  ( abs `  ( v  -  c
 ) )  <  z
 )  ->  ( abs `  ( ( u  .+  v )  -  (
 b  .+  c )
 ) )  <  a
 ) )   =>    |- 
 .+  e.  ( ( J  tX  J )  Cn  J )
 
Theoremaddcncntop 14741 Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 +  e.  ( ( J  tX  J )  Cn  J )
 
Theoremsubcncntop 14742 Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 -  e.  ( ( J  tX  J )  Cn  J )
 
Theoremmulcncntop 14743 Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 x.  e.  ( ( J  tX  J )  Cn  J )
 
Theoremdivcnap 14744* Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  { x  e.  CC  |  x #  0 } )   =>    |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  /  z ) )  e.  ( ( J  tX  K )  Cn  J )
 
Theoremmpomulcn 14745* Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  ( ( J  tX  J )  Cn  J )
 
Theoremfsumcncntop 14746* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
 
Theoremfsumcn 14747* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  K  =  ( TopOpen ` fld )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
 
Theoremexpcn 14748* The power function on complex numbers, for fixed exponent  N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 7997. (Revised by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
 
9.2.7  Topological definitions using the reals
 
Syntaxccncf 14749 Extend class notation to include the operation which returns a class of continuous complex functions.
 class  -cn->
 
Definitiondf-cncf 14750* Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.)
 |- 
 -cn->  =  ( a  e. 
 ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
 )  |  A. x  e.  a  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  <  d  ->  ( abs `  ( ( f `
  x )  -  ( f `  y
 ) ) )  < 
 e ) } )
 
Theoremcncfval 14751* The value of the continuous complex function operation is the set of continuous functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  <  z  ->  ( abs `  ( ( f `
  x )  -  ( f `  w ) ) )  < 
 y ) } )
 
Theoremelcncf 14752* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  <  z  ->  ( abs `  ( ( F `
  x )  -  ( F `  w ) ) )  <  y
 ) ) ) )
 
Theoremelcncf2 14753* Version of elcncf 14752 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  <  z  ->  ( abs `  ( ( F `
  w )  -  ( F `  x ) ) )  <  y
 ) ) ) )
 
Theoremcncfrss 14754 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
 
Theoremcncfrss2 14755 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
 
Theoremcncff 14756 A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  F : A --> B )
 
Theoremcncfi 14757* Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( F  e.  ( A -cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  <  z  ->  ( abs `  ( ( F `  w )  -  ( F `  C ) ) )  <  R ) )
 
Theoremelcncf1di 14758* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )   &    |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  <  Z  ->  ( abs `  ( ( F `
  x )  -  ( F `  w ) ) )  <  y
 ) ) )   =>    |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A
 -cn-> B ) ) )
 
Theoremelcncf1ii 14759* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  F : A --> B   &    |-  (
 ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )   &    |-  (
 ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
 ( abs `  ( x  -  w ) )  <  Z  ->  ( abs `  (
 ( F `  x )  -  ( F `  w ) ) )  <  y ) )   =>    |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
 
Theoremrescncf 14760 A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( C  C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
 
Theoremcncfcdm 14761 Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( C  C_  CC  /\  F  e.  ( A -cn-> B ) ) 
 ->  ( F  e.  ( A -cn-> C )  <->  F : A --> C ) )
 
Theoremcncfss 14762 The set of continuous functions is expanded when the codomain is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
 |-  ( ( B  C_  C  /\  C  C_  CC )  ->  ( A -cn-> B )  C_  ( A -cn-> C ) )
 
Theoremclimcncf 14763 Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  ( A -cn-> B ) )   &    |-  ( ph  ->  G : Z
 --> A )   &    |-  ( ph  ->  G  ~~>  D )   &    |-  ( ph  ->  D  e.  A )   =>    |-  ( ph  ->  ( F  o.  G )  ~~>  ( F `  D ) )
 
Theoremabscncf 14764 Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |- 
 abs  e.  ( CC -cn-> RR )
 
Theoremrecncf 14765 Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  Re  e.  ( CC
 -cn-> RR )
 
Theoremimcncf 14766 Imaginary part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  Im  e.  ( CC
 -cn-> RR )
 
Theoremcjcncf 14767 Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  *  e.  ( CC
 -cn-> CC )
 
Theoremmulc1cncf 14768* Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( x  e.  CC  |->  ( A  x.  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremdivccncfap 14769* Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.)
 |-  F  =  ( x  e.  CC  |->  ( x 
 /  A ) )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremcncfco 14770 The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( ph  ->  F  e.  ( A -cn-> B ) )   &    |-  ( ph  ->  G  e.  ( B -cn-> C ) )   =>    |-  ( ph  ->  ( G  o.  F )  e.  ( A -cn-> C ) )
 
Theoremcncfmet 14771 Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )   &    |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )   &    |-  J  =  ( MetOpen `  C )   &    |-  K  =  ( MetOpen `  D )   =>    |-  (
 ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K ) )
 
Theoremcncfcncntop 14772 Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  A )   &    |-  L  =  ( Jt  B )   =>    |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( K  Cn  L ) )
 
Theoremcncfcn1cntop 14773 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( CC -cn-> CC )  =  ( J  Cn  J )
 
Theoremcncfcn1 14774 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( CC -cn-> CC )  =  ( J  Cn  J )
 
Theoremcncfmptc 14775* A constant function is a continuous function on  CC. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
 |-  ( ( A  e.  T  /\  S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  A )  e.  ( S -cn-> T ) )
 
Theoremcncfmptid 14776* The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
 |-  ( ( S  C_  T  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
 
Theoremcncfmpt1f 14777* Composition of continuous functions.  -cn-> analogue of cnmpt11f 14463. (Contributed by Mario Carneiro, 3-Sep-2014.)
 |-  ( ph  ->  F  e.  ( CC -cn-> CC )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( F `
  A ) )  e.  ( X -cn-> CC ) )
 
Theoremcncfmpt2fcntop 14778* Composition of continuous functions.  -cn-> analogue of cnmpt12f 14465. (Contributed by Mario Carneiro, 3-Sep-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  ( ph  ->  F  e.  ( ( J  tX  J )  Cn  J ) )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X
 -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC )
 )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( X -cn-> CC ) )
 
Theoremaddccncf 14779* Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  F  =  ( x  e.  CC  |->  ( x  +  A ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremidcncf 14780 The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 14776 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  CC  |->  x )   =>    |-  F  e.  ( CC -cn-> CC )
 
Theoremsub1cncf 14781* Subtracting a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  CC  |->  ( x  -  A ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremsub2cncf 14782* Subtraction from a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
 |-  F  =  ( x  e.  CC  |->  ( A  -  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( CC
 -cn-> CC ) )
 
Theoremcdivcncfap 14783* Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
 |-  F  =  ( x  e.  { y  e. 
 CC  |  y #  0 }  |->  ( A  /  x ) )   =>    |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn->
 CC ) )
 
Theoremnegcncf 14784* The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  F  =  ( x  e.  A  |->  -u x )   =>    |-  ( A  C_  CC  ->  F  e.  ( A
 -cn-> CC ) )
 
Theoremnegfcncf 14785* The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  G  =  ( x  e.  A  |->  -u ( F `  x ) )   =>    |-  ( F  e.  ( A -cn-> CC )  ->  G  e.  ( A -cn-> CC )
 )
 
Theoremmulcncflem 14786* Lemma for mulcncf 14787. (Contributed by Jim Kingdon, 29-May-2023.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   &    |-  ( ph  ->  V  e.  X )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  F  e.  RR+ )   &    |-  ( ph  ->  G  e.  RR+ )   &    |-  ( ph  ->  S  e.  RR+ )   &    |-  ( ph  ->  T  e.  RR+ )   &    |-  ( ph  ->  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  S  ->  ( abs `  ( ( ( x  e.  X  |->  A ) `  u )  -  ( ( x  e.  X  |->  A ) `
  V ) ) )  <  F ) )   &    |-  ( ph  ->  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  T  ->  ( abs `  ( ( ( x  e.  X  |->  B ) `  u )  -  ( ( x  e.  X  |->  B ) `
  V ) ) )  <  G ) )   &    |-  ( ph  ->  A. u  e.  X  ( ( ( abs `  ( [_ u  /  x ]_ A  -  [_ V  /  x ]_ A ) )  <  F  /\  ( abs `  ( [_ u  /  x ]_ B  -  [_ V  /  x ]_ B ) )  <  G )  ->  ( abs `  ( ( [_ u  /  x ]_ A  x.  [_ u  /  x ]_ B )  -  ( [_ V  /  x ]_ A  x.  [_ V  /  x ]_ B ) ) )  <  E ) )   =>    |-  ( ph  ->  E. d  e.  RR+  A. u  e.  X  ( ( abs `  ( u  -  V ) )  <  d  ->  ( abs `  ( ( ( x  e.  X  |->  ( A  x.  B ) ) `  u )  -  ( ( x  e.  X  |->  ( A  x.  B ) ) `
  V ) ) )  <  E ) )
 
Theoremmulcncf 14787* The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A  x.  B ) )  e.  ( X
 -cn-> CC ) )
 
Theoremexpcncf 14788* The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
 |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( CC
 -cn-> CC ) )
 
Theoremcnrehmeocntop 14789* The canonical bijection from  ( RR  X.  RR ) to  CC described in cnref1o 9719 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if  ( RR  X.  RR ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   &    |-  J  =  ( topGen `  ran  (,) )   &    |-  K  =  ( MetOpen `  ( abs  o. 
 -  ) )   =>    |-  F  e.  (
 ( J  tX  J ) Homeo K )
 
Theoremcnopnap 14790* The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( A  e.  CC  ->  { w  e.  CC  |  w #  A }  e.  ( MetOpen `  ( abs  o. 
 -  ) ) )
 
PART 10  BASIC REAL AND COMPLEX ANALYSIS
 
10.1  Continuity
 
Theoremaddcncf 14791* The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A  +  B ) )  e.  ( X
 -cn-> CC ) )
 
Theoremsubcncf 14792* The subtraction of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> CC ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A  -  B ) )  e.  ( X
 -cn-> CC ) )
 
Theoremdivcncfap 14793* The quotient of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> { y  e.  CC  |  y #  0 }
 ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A 
 /  B ) )  e.  ( X -cn-> CC ) )
 
Theoremmaxcncf 14794* The maximum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 18-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sup ( { A ,  B } ,  RR ,  <  ) )  e.  ( X -cn-> RR ) )
 
Theoremmincncf 14795* The minimum of two continuous real functions is continuous. (Contributed by Jim Kingdon, 19-Jul-2025.)
 |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> RR ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X
 -cn-> RR ) )   =>    |-  ( ph  ->  ( x  e.  X  |-> inf ( { A ,  B } ,  RR ,  <  ) )  e.  ( X
 -cn-> RR ) )
 
10.1.1  Dedekind cuts
 
Theoremdedekindeulemuub 14796* Lemma for dedekindeu 14802. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   &    |-  ( ph  ->  A  e.  U )   =>    |-  ( ph  ->  A. z  e.  L  z  <  A )
 
Theoremdedekindeulemub 14797* Lemma for dedekindeu 14802. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  A. y  e.  L  y  <  x )
 
Theoremdedekindeulemloc 14798* Lemma for dedekindeu 14802. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  A. x  e. 
 RR  A. y  e.  RR  ( x  <  y  ->  ( E. z  e.  L  x  <  z  \/  A. z  e.  L  z  <  y ) ) )
 
Theoremdedekindeulemlub 14799* Lemma for dedekindeu 14802. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  L  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  L  y  <  z
 ) ) )
 
Theoremdedekindeulemlu 14800* Lemma for dedekindeu 14802. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
 |-  ( ph  ->  L  C_ 
 RR )   &    |-  ( ph  ->  U 
 C_  RR )   &    |-  ( ph  ->  E. q  e.  RR  q  e.  L )   &    |-  ( ph  ->  E. r  e.  RR  r  e.  U )   &    |-  ( ph  ->  A. q  e.  RR  (
 q  e.  L  <->  E. r  e.  L  q  <  r ) )   &    |-  ( ph  ->  A. r  e. 
 RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )   &    |-  ( ph  ->  ( L  i^i  U )  =  (/) )   &    |-  ( ph  ->  A. q  e.  RR  A. r  e. 
 RR  ( q  < 
 r  ->  ( q  e.  L  \/  r  e.  U ) ) )   =>    |-  ( ph  ->  E. x  e.  RR  ( A. q  e.  L  q  <  x  /\  A. r  e.  U  x  <  r ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15634
  Copyright terms: Public domain < Previous  Next >