Theorem List for Intuitionistic Logic Explorer - 14701-14800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | metdmdm 14701 |
Recover the base set from a metric. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
    
  |
| |
| Theorem | xmetunirn 14702 |
Two ways to express an extended metric on an unspecified base.
(Contributed by Mario Carneiro, 13-Oct-2015.)
|
  
       |
| |
| Theorem | xmeteq0 14703 |
The value of an extended metric is zero iff its arguments are equal.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
            
   |
| |
| Theorem | meteq0 14704 |
The value of a metric is zero iff its arguments are equal. Property M2
of [Kreyszig] p. 4. (Contributed by
NM, 30-Aug-2006.)
|
     
     
   |
| |
| Theorem | xmettri2 14705 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
         
                   |
| |
| Theorem | mettri2 14706 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
20-Aug-2015.)
|
      
 
        
       |
| |
| Theorem | xmet0 14707 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
           
  |
| |
| Theorem | met0 14708 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM,
30-Aug-2006.)
|
          
  |
| |
| Theorem | xmetge0 14709 |
The distance function of a metric space is nonnegative. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
       
      |
| |
| Theorem | metge0 14710 |
The distance function of a metric space is nonnegative. (Contributed by
NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
     

      |
| |
| Theorem | xmetlecl 14711 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Mario Carneiro, 20-Aug-2015.)
|
             
 
      |
| |
| Theorem | xmetsym 14712 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
           
      |
| |
| Theorem | xmetpsmet 14713 |
An extended metric is a pseudometric. (Contributed by Thierry Arnoux,
7-Feb-2018.)
|
      PsMet    |
| |
| Theorem | xmettpos 14714 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
      tpos   |
| |
| Theorem | metsym 14715 |
The distance function of a metric space is symmetric. Definition
14-1.1(c) of [Gleason] p. 223.
(Contributed by NM, 27-Aug-2006.)
(Revised by Mario Carneiro, 20-Aug-2015.)
|
     
    
      |
| |
| Theorem | xmettri 14716 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
         
                   |
| |
| Theorem | mettri 14717 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by NM,
27-Aug-2006.)
|
      
 
        
       |
| |
| Theorem | xmettri3 14718 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
         
                   |
| |
| Theorem | mettri3 14719 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 13-Mar-2007.)
|
      
 
        
       |
| |
| Theorem | xmetrtri 14720 |
One half of the reverse triangle inequality for the distance function of
an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
|
         
             
      |
| |
| Theorem | metrtri 14721 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
21-Apr-2023.)
|
      
 
       
     
      |
| |
| Theorem | metn0 14722 |
A metric space is nonempty iff its base set is nonempty. (Contributed
by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
     
   |
| |
| Theorem | xmetres2 14723 |
Restriction of an extended metric. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
                   |
| |
| Theorem | metreslem 14724 |
Lemma for metres 14727. (Contributed by Mario Carneiro,
24-Aug-2015.)
|
 
               |
| |
| Theorem | metres2 14725 |
Lemma for metres 14727. (Contributed by FL, 12-Oct-2006.) (Proof
shortened by Mario Carneiro, 14-Aug-2015.)
|
     
           |
| |
| Theorem | xmetres 14726 |
A restriction of an extended metric is an extended metric. (Contributed
by Mario Carneiro, 24-Aug-2015.)
|
                   |
| |
| Theorem | metres 14727 |
A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
     
           |
| |
| Theorem | 0met 14728 |
The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario
Carneiro, 14-Aug-2015.)
|
     |
| |
| 9.2.3 Metric space balls
|
| |
| Theorem | blfvalps 14729* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Feb-2018.)
|
 PsMet       
         |
| |
| Theorem | blfval 14730* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry
Arnoux, 11-Feb-2018.)
|
           
         |
| |
| Theorem | blex 14731 |
A ball is a set. Also see blfn 14185 in case you just know is a set,
not      . (Contributed by Jim Kingdon,
4-May-2023.)
|
            |
| |
| Theorem | blvalps 14732* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
         
       |
| |
| Theorem | blval 14733* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
                        |
| |
| Theorem | elblps 14734 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
 
            
    |
| |
| Theorem | elbl 14735 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.)
|
                     
    |
| |
| Theorem | elbl2ps 14736 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
            
   |
| |
| Theorem | elbl2 14737 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.)
|
         
 
                |
| |
| Theorem | elbl3ps 14738 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
   PsMet     
            
   |
| |
| Theorem | elbl3 14739 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
         
 
                |
| |
| Theorem | blcomps 14740 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
        
           |
| |
| Theorem | blcom 14741 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.)
|
         
 
        
           |
| |
| Theorem | xblpnfps 14742 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
             
    |
| |
| Theorem | xblpnf 14743 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
                    
    |
| |
| Theorem | blpnf 14744 |
The infinity ball in a standard metric is just the whole space.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                |
| |
| Theorem | bldisj 14745 |
Two balls are disjoint if the center-to-center distance is more than the
sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
|
        

    
     
                    |
| |
| Theorem | blgt0 14746 |
A nonempty ball implies that the radius is positive. (Contributed by
NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                 
  |
| |
| Theorem | bl2in 14747 |
Two balls are disjoint if they don't overlap. (Contributed by NM,
11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                
                    |
| |
| Theorem | xblss2ps 14748 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14751 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
 PsMet                     
                          |
| |
| Theorem | xblss2 14749 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14751 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                         
                          |
| |
| Theorem | blss2ps 14750 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet                              |
| |
| Theorem | blss2 14751 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
        
     
                     |
| |
| Theorem | blhalf 14752 |
A ball of radius is contained in a ball of radius centered
at any point inside the smaller ball. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
|
         
                                |
| |
| Theorem | blfps 14753 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet               |
| |
| Theorem | blf 14754 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.)
|
                   |
| |
| Theorem | blrnps 14755* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet  
     
           |
| |
| Theorem | blrn 14756* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
            
           |
| |
| Theorem | xblcntrps 14757 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

 
          |
| |
| Theorem | xblcntr 14758 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
         
          |
| |
| Theorem | blcntrps 14759 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

          |
| |
| Theorem | blcntr 14760 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | xblm 14761* |
A ball is inhabited iff the radius is positive. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
                     |
| |
| Theorem | bln0 14762 |
A ball is not empty. It is also inhabited, as seen at blcntr 14760.
(Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                  |
| |
| Theorem | blelrnps 14763 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
               |
| |
| Theorem | blelrn 14764 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
               
      |
| |
| Theorem | blssm 14765 |
A ball is a subset of the base set of a metric space. (Contributed by
NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | unirnblps 14766 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet         |
| |
| Theorem | unirnbl 14767 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | blininf 14768 |
The intersection of two balls with the same center is the smaller of
them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
                          inf  
      |
| |
| Theorem | ssblps 14769 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet    
                   |
| |
| Theorem | ssbl 14770 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.)
|
         
                    |
| |
| Theorem | blssps 14771* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
             
  |
| |
| Theorem | blss 14772* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.)
|
                       |
| |
| Theorem | blssexps 14773* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
                      |
| |
| Theorem | blssex 14774* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                             |
| |
| Theorem | ssblex 14775* |
A nested ball exists whose radius is less than any desired amount.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
  
                    |
| |
| Theorem | blin2 14776* |
Given any two balls and a point in their intersection, there is a ball
contained in the intersection with the given center point. (Contributed
by Mario Carneiro, 12-Nov-2013.)
|
          

          
       
    |
| |
| Theorem | blbas 14777 |
The balls of a metric space form a basis for a topology. (Contributed
by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
|
         
  |
| |
| Theorem | blres 14778 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
            
                     |
| |
| Theorem | xmeterval 14779 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
     
     
    
    |
| |
| Theorem | xmeter 14780 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
     
       |
| |
| Theorem | xmetec 14781 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
                        |
| |
| Theorem | blssec 14782 |
A ball centered at is
contained in the set of points finitely
separated from . This is just an application of ssbl 14770
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
           
            |
| |
| Theorem | blpnfctr 14783 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
                               |
| |
| Theorem | xmetresbl 14784 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 14781, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
                          |
| |
| 9.2.4 Open sets of a metric space
|
| |
| Theorem | mopnrel 14785 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
 |
| |
| Theorem | mopnval 14786 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
    is the family of all open sets in the metric space
determined by the metric . By mopntop 14788, the open sets of a
metric space form a topology , whose base set is  by
mopnuni 14789. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
                    |
| |
| Theorem | mopntopon 14787 |
The set of open sets of a metric space is a topology on .
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
          TopOn    |
| |
| Theorem | mopntop 14788 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | mopnuni 14789 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | elmopn 14790* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
           |
| |
| Theorem | mopnfss 14791 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
         
   |
| |
| Theorem | mopnm 14792 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | elmopn2 14793* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
            |
| |
| Theorem | mopnss 14794 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
              |
| |
| Theorem | isxms 14795 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                          |
| |
| Theorem | isxms2 14796 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                               |
| |
| Theorem | isms 14797 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                          |
| |
| Theorem | isms2 14798 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                             |
| |
| Theorem | xmstopn 14799 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
                        |
| |
| Theorem | mstopn 14800 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
                       |