Theorem List for Intuitionistic Logic Explorer - 14701-14800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | metres2 14701 |
Lemma for metres 14703. (Contributed by FL, 12-Oct-2006.) (Proof
shortened by Mario Carneiro, 14-Aug-2015.)
|
     
           |
| |
| Theorem | xmetres 14702 |
A restriction of an extended metric is an extended metric. (Contributed
by Mario Carneiro, 24-Aug-2015.)
|
                   |
| |
| Theorem | metres 14703 |
A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
     
           |
| |
| Theorem | 0met 14704 |
The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario
Carneiro, 14-Aug-2015.)
|
     |
| |
| 9.2.3 Metric space balls
|
| |
| Theorem | blfvalps 14705* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Feb-2018.)
|
 PsMet       
         |
| |
| Theorem | blfval 14706* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry
Arnoux, 11-Feb-2018.)
|
           
         |
| |
| Theorem | blex 14707 |
A ball is a set. Also see blfn 14183 in case you just know is a set,
not      . (Contributed by Jim Kingdon,
4-May-2023.)
|
            |
| |
| Theorem | blvalps 14708* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
         
       |
| |
| Theorem | blval 14709* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
                        |
| |
| Theorem | elblps 14710 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
 
            
    |
| |
| Theorem | elbl 14711 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.)
|
                     
    |
| |
| Theorem | elbl2ps 14712 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
            
   |
| |
| Theorem | elbl2 14713 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.)
|
         
 
                |
| |
| Theorem | elbl3ps 14714 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
   PsMet     
            
   |
| |
| Theorem | elbl3 14715 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
         
 
                |
| |
| Theorem | blcomps 14716 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
        
           |
| |
| Theorem | blcom 14717 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.)
|
         
 
        
           |
| |
| Theorem | xblpnfps 14718 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
             
    |
| |
| Theorem | xblpnf 14719 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
                    
    |
| |
| Theorem | blpnf 14720 |
The infinity ball in a standard metric is just the whole space.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                |
| |
| Theorem | bldisj 14721 |
Two balls are disjoint if the center-to-center distance is more than the
sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
|
        

    
     
                    |
| |
| Theorem | blgt0 14722 |
A nonempty ball implies that the radius is positive. (Contributed by
NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                 
  |
| |
| Theorem | bl2in 14723 |
Two balls are disjoint if they don't overlap. (Contributed by NM,
11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                
                    |
| |
| Theorem | xblss2ps 14724 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14727 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
 PsMet                     
                          |
| |
| Theorem | xblss2 14725 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14727 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                         
                          |
| |
| Theorem | blss2ps 14726 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet                              |
| |
| Theorem | blss2 14727 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
        
     
                     |
| |
| Theorem | blhalf 14728 |
A ball of radius is contained in a ball of radius centered
at any point inside the smaller ball. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
|
         
                                |
| |
| Theorem | blfps 14729 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet               |
| |
| Theorem | blf 14730 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.)
|
                   |
| |
| Theorem | blrnps 14731* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet  
     
           |
| |
| Theorem | blrn 14732* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
            
           |
| |
| Theorem | xblcntrps 14733 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

 
          |
| |
| Theorem | xblcntr 14734 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
         
          |
| |
| Theorem | blcntrps 14735 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

          |
| |
| Theorem | blcntr 14736 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | xblm 14737* |
A ball is inhabited iff the radius is positive. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
                     |
| |
| Theorem | bln0 14738 |
A ball is not empty. It is also inhabited, as seen at blcntr 14736.
(Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                  |
| |
| Theorem | blelrnps 14739 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
               |
| |
| Theorem | blelrn 14740 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
               
      |
| |
| Theorem | blssm 14741 |
A ball is a subset of the base set of a metric space. (Contributed by
NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | unirnblps 14742 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet         |
| |
| Theorem | unirnbl 14743 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | blininf 14744 |
The intersection of two balls with the same center is the smaller of
them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
                          inf  
      |
| |
| Theorem | ssblps 14745 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet    
                   |
| |
| Theorem | ssbl 14746 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.)
|
         
                    |
| |
| Theorem | blssps 14747* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
             
  |
| |
| Theorem | blss 14748* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.)
|
                       |
| |
| Theorem | blssexps 14749* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
                      |
| |
| Theorem | blssex 14750* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                             |
| |
| Theorem | ssblex 14751* |
A nested ball exists whose radius is less than any desired amount.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
  
                    |
| |
| Theorem | blin2 14752* |
Given any two balls and a point in their intersection, there is a ball
contained in the intersection with the given center point. (Contributed
by Mario Carneiro, 12-Nov-2013.)
|
          

          
       
    |
| |
| Theorem | blbas 14753 |
The balls of a metric space form a basis for a topology. (Contributed
by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
|
         
  |
| |
| Theorem | blres 14754 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
            
                     |
| |
| Theorem | xmeterval 14755 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
     
     
    
    |
| |
| Theorem | xmeter 14756 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
     
       |
| |
| Theorem | xmetec 14757 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
                        |
| |
| Theorem | blssec 14758 |
A ball centered at is
contained in the set of points finitely
separated from . This is just an application of ssbl 14746
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
           
            |
| |
| Theorem | blpnfctr 14759 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
                               |
| |
| Theorem | xmetresbl 14760 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 14757, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
                          |
| |
| 9.2.4 Open sets of a metric space
|
| |
| Theorem | mopnrel 14761 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
 |
| |
| Theorem | mopnval 14762 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
    is the family of all open sets in the metric space
determined by the metric . By mopntop 14764, the open sets of a
metric space form a topology , whose base set is  by
mopnuni 14765. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
                    |
| |
| Theorem | mopntopon 14763 |
The set of open sets of a metric space is a topology on .
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
          TopOn    |
| |
| Theorem | mopntop 14764 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | mopnuni 14765 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | elmopn 14766* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
           |
| |
| Theorem | mopnfss 14767 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
         
   |
| |
| Theorem | mopnm 14768 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | elmopn2 14769* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
            |
| |
| Theorem | mopnss 14770 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
              |
| |
| Theorem | isxms 14771 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                          |
| |
| Theorem | isxms2 14772 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                               |
| |
| Theorem | isms 14773 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                          |
| |
| Theorem | isms2 14774 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                             |
| |
| Theorem | xmstopn 14775 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
                        |
| |
| Theorem | mstopn 14776 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
                       |
| |
| Theorem | xmstps 14777 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
    |
| |
| Theorem | msxms 14778 |
A metric space is an extended metric space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|

   |
| |
| Theorem | mstps 14779 |
A metric space is a topological space. (Contributed by Mario Carneiro,
26-Aug-2015.)
|

  |
| |
| Theorem | xmsxmet 14780 |
The distance function, suitably truncated, is an extended metric on
. (Contributed
by Mario Carneiro, 2-Sep-2015.)
|
                     |
| |
| Theorem | msmet 14781 |
The distance function, suitably truncated, is a metric on .
(Contributed by Mario Carneiro, 12-Nov-2013.)
|
            
      |
| |
| Theorem | msf 14782 |
The distance function of a metric space is a function into the real
numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                     |
| |
| Theorem | xmsxmet2 14783 |
The distance function, suitably truncated, is an extended metric on
. (Contributed
by Mario Carneiro, 2-Oct-2015.)
|
                     |
| |
| Theorem | msmet2 14784 |
The distance function, suitably truncated, is a metric on .
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
                   |
| |
| Theorem | mscl 14785 |
Closure of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
         
    
  |
| |
| Theorem | xmscl 14786 |
Closure of the distance function of an extended metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
      |
| |
| Theorem | xmsge0 14787 |
The distance function in an extended metric space is nonnegative.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
           
      |
| |
| Theorem | xmseq0 14788 |
The distance between two points in an extended metric space is zero iff
the two points are identical. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
           
    
   |
| |
| Theorem | xmssym 14789 |
The distance function in an extended metric space is symmetric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
          |
| |
| Theorem | xmstri2 14790 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri2 14791 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | xmstri 14792 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri 14793 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | xmstri3 14794 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri3 14795 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | msrtri 14796 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
         
  
       
     
      |
| |
| Theorem | xmspropd 14797 |
Property deduction for an extended metric space. (Contributed by Mario
Carneiro, 4-Oct-2015.)
|
                    
             
            |
| |
| Theorem | mspropd 14798 |
Property deduction for a metric space. (Contributed by Mario Carneiro,
4-Oct-2015.)
|
                    
             
      
   |
| |
| Theorem | setsmsbasg 14799 |
The base set of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
                

sSet  TopSet  
       
              |
| |
| Theorem | setsmsdsg 14800 |
The distance function of a constructed metric space. (Contributed by
Mario Carneiro, 28-Aug-2015.)
|
                

sSet  TopSet  
       
                  |