ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-ie2 Unicode version

Axiom ax-ie2 1487
Description: Define existential quantification.  E. x ph means "there exists at least one set  x such that  ph is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
ax-ie2  |-  ( A. x ( ps  ->  A. x ps )  -> 
( A. x (
ph  ->  ps )  <->  ( E. x ph  ->  ps )
) )

Detailed syntax breakdown of Axiom ax-ie2
StepHypRef Expression
1 wps . . . 4  wff  ps
2 vx . . . . 5  setvar  x
31, 2wal 1346 . . . 4  wff  A. x ps
41, 3wi 4 . . 3  wff  ( ps 
->  A. x ps )
54, 2wal 1346 . 2  wff  A. x
( ps  ->  A. x ps )
6 wph . . . . 5  wff  ph
76, 1wi 4 . . . 4  wff  ( ph  ->  ps )
87, 2wal 1346 . . 3  wff  A. x
( ph  ->  ps )
96, 2wex 1485 . . . 4  wff  E. x ph
109, 1wi 4 . . 3  wff  ( E. x ph  ->  ps )
118, 10wb 104 . 2  wff  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
125, 11wi 4 1  wff  ( A. x ( ps  ->  A. x ps )  -> 
( A. x (
ph  ->  ps )  <->  ( E. x ph  ->  ps )
) )
Colors of variables: wff set class
This axiom is referenced by:  19.23ht  1490  bj-ex  13797
  Copyright terms: Public domain W3C validator