| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-ie2 | GIF version | ||
| Description: Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ax-ie2 | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wps | . . . 4 wff 𝜓 | |
| 2 | vx | . . . . 5 setvar 𝑥 | |
| 3 | 1, 2 | wal 1362 | . . . 4 wff ∀𝑥𝜓 | 
| 4 | 1, 3 | wi 4 | . . 3 wff (𝜓 → ∀𝑥𝜓) | 
| 5 | 4, 2 | wal 1362 | . 2 wff ∀𝑥(𝜓 → ∀𝑥𝜓) | 
| 6 | wph | . . . . 5 wff 𝜑 | |
| 7 | 6, 1 | wi 4 | . . . 4 wff (𝜑 → 𝜓) | 
| 8 | 7, 2 | wal 1362 | . . 3 wff ∀𝑥(𝜑 → 𝜓) | 
| 9 | 6, 2 | wex 1506 | . . . 4 wff ∃𝑥𝜑 | 
| 10 | 9, 1 | wi 4 | . . 3 wff (∃𝑥𝜑 → 𝜓) | 
| 11 | 8, 10 | wb 105 | . 2 wff (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | 
| 12 | 5, 11 | wi 4 | 1 wff (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: 19.23ht 1511 bj-ex 15408 | 
| Copyright terms: Public domain | W3C validator |