Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex Unicode version

Theorem bj-ex 13643
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1586 and 19.9ht 1629 or 19.23ht 1485). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex  |-  ( E. x ph  ->  ph )
Distinct variable group:    ph, x

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1482 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ph )  <->  ( E. x ph  ->  ph ) ) )
2 ax-17 1514 . . 3  |-  ( ph  ->  A. x ph )
31, 2mpg 1439 . 2  |-  ( A. x ( ph  ->  ph )  <->  ( E. x ph  ->  ph ) )
4 id 19 . 2  |-  ( ph  ->  ph )
53, 4mpgbi 1440 1  |-  ( E. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1437  ax-ie2 1482  ax-17 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bj-d0clsepcl  13807  bj-inf2vnlem1  13852  bj-nn0sucALT  13860
  Copyright terms: Public domain W3C validator