Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex Unicode version

Theorem bj-ex 15375
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1612 and 19.9ht 1655 or 19.23ht 1511). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex  |-  ( E. x ph  ->  ph )
Distinct variable group:    ph, x

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1508 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ph )  <->  ( E. x ph  ->  ph ) ) )
2 ax-17 1540 . . 3  |-  ( ph  ->  A. x ph )
31, 2mpg 1465 . 2  |-  ( A. x ( ph  ->  ph )  <->  ( E. x ph  ->  ph ) )
4 id 19 . 2  |-  ( ph  ->  ph )
53, 4mpgbi 1466 1  |-  ( E. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1463  ax-ie2 1508  ax-17 1540
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-d0clsepcl  15538  bj-inf2vnlem1  15583  bj-nn0sucALT  15591
  Copyright terms: Public domain W3C validator