Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex Unicode version

Theorem bj-ex 16126
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1644 and 19.9ht 1687 or 19.23ht 1543). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex  |-  ( E. x ph  ->  ph )
Distinct variable group:    ph, x

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1540 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ph )  <->  ( E. x ph  ->  ph ) ) )
2 ax-17 1572 . . 3  |-  ( ph  ->  A. x ph )
31, 2mpg 1497 . 2  |-  ( A. x ( ph  ->  ph )  <->  ( E. x ph  ->  ph ) )
4 id 19 . 2  |-  ( ph  ->  ph )
53, 4mpgbi 1498 1  |-  ( E. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1495  ax-ie2 1540  ax-17 1572
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-d0clsepcl  16288  bj-inf2vnlem1  16333  bj-nn0sucALT  16341
  Copyright terms: Public domain W3C validator