Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex Unicode version

Theorem bj-ex 15735
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1621 and 19.9ht 1664 or 19.23ht 1520). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex  |-  ( E. x ph  ->  ph )
Distinct variable group:    ph, x

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1517 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x (
ph  ->  ph )  <->  ( E. x ph  ->  ph ) ) )
2 ax-17 1549 . . 3  |-  ( ph  ->  A. x ph )
31, 2mpg 1474 . 2  |-  ( A. x ( ph  ->  ph )  <->  ( E. x ph  ->  ph ) )
4 id 19 . 2  |-  ( ph  ->  ph )
53, 4mpgbi 1475 1  |-  ( E. x ph  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1472  ax-ie2 1517  ax-17 1549
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-d0clsepcl  15898  bj-inf2vnlem1  15943  bj-nn0sucALT  15951
  Copyright terms: Public domain W3C validator