ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 Unicode version

Theorem hbe1 1518
Description:  x is not free in  E. x ph. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1  |-  ( E. x ph  ->  A. x E. x ph )

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1516 1  |-  ( E. x ph  ->  A. x E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-ie1 1516
This theorem is referenced by:  nfe1  1519  19.8a  1613  exim  1622  19.43  1651  hbex  1659  excomim  1686  19.38  1699  exan  1716  equs5e  1818  exdistrfor  1823  hbmo1  2092  euan  2110  euor2  2112  eupicka  2134  mopick2  2137  moexexdc  2138  2moex  2140  2euex  2141  2exeu  2146  2eu4  2147  2eu7  2148
  Copyright terms: Public domain W3C validator