ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 Unicode version

Theorem hbe1 1483
Description:  x is not free in  E. x ph. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1  |-  ( E. x ph  ->  A. x E. x ph )

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1481 1  |-  ( E. x ph  ->  A. x E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-ie1 1481
This theorem is referenced by:  nfe1  1484  19.8a  1578  exim  1587  19.43  1616  hbex  1624  excomim  1651  19.38  1664  exan  1681  equs5e  1783  exdistrfor  1788  hbmo1  2052  euan  2070  euor2  2072  eupicka  2094  mopick2  2097  moexexdc  2098  2moex  2100  2euex  2101  2exeu  2106  2eu4  2107  2eu7  2108
  Copyright terms: Public domain W3C validator