ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 Unicode version

Theorem hbe1 1454
Description:  x is not free in  E. x ph. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1  |-  ( E. x ph  ->  A. x E. x ph )

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1452 1  |-  ( E. x ph  ->  A. x E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1312   E.wex 1451
This theorem was proved from axioms:  ax-ie1 1452
This theorem is referenced by:  nfe1  1455  19.8a  1552  exim  1561  19.43  1590  hbex  1598  excomim  1624  19.38  1637  exan  1654  equs5e  1749  exdistrfor  1754  hbmo1  2013  euan  2031  euor2  2033  eupicka  2055  mopick2  2058  moexexdc  2059  2moex  2061  2euex  2062  2exeu  2067  2eu4  2068  2eu7  2069
  Copyright terms: Public domain W3C validator