ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 8098
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8056. Proofs should normally use mulass 8126 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7993 . . . 4  class  CC
31, 2wcel 2200 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2200 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2200 . . 3  wff  C  e.  CC
83, 5, 7w3a 1002 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 8000 . . . . 5  class  x.
101, 4, 9co 6000 . . . 4  class  ( A  x.  B )
1110, 6, 9co 6000 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 6000 . . . 4  class  ( B  x.  C )
131, 12, 9co 6000 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1395 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  8126
  Copyright terms: Public domain W3C validator