ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 7916
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7874. Proofs should normally use mulass 7944 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7811 . . . 4  class  CC
31, 2wcel 2148 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2148 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2148 . . 3  wff  C  e.  CC
83, 5, 7w3a 978 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 7818 . . . . 5  class  x.
101, 4, 9co 5877 . . . 4  class  ( A  x.  B )
1110, 6, 9co 5877 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 5877 . . . 4  class  ( B  x.  C )
131, 12, 9co 5877 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1353 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  7944
  Copyright terms: Public domain W3C validator