ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 7852
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7810. Proofs should normally use mulass 7880 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7747 . . . 4  class  CC
31, 2wcel 2136 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2136 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2136 . . 3  wff  C  e.  CC
83, 5, 7w3a 968 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 7754 . . . . 5  class  x.
101, 4, 9co 5841 . . . 4  class  ( A  x.  B )
1110, 6, 9co 5841 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 5841 . . . 4  class  ( B  x.  C )
131, 12, 9co 5841 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1343 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  7880
  Copyright terms: Public domain W3C validator