ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 7889
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7847. Proofs should normally use mulass 7917 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7784 . . . 4  class  CC
31, 2wcel 2146 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2146 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2146 . . 3  wff  C  e.  CC
83, 5, 7w3a 978 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 7791 . . . . 5  class  x.
101, 4, 9co 5865 . . . 4  class  ( A  x.  B )
1110, 6, 9co 5865 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 5865 . . . 4  class  ( B  x.  C )
131, 12, 9co 5865 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1353 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  7917
  Copyright terms: Public domain W3C validator