ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 7977
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7935. Proofs should normally use mulass 8005 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7872 . . . 4  class  CC
31, 2wcel 2164 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2164 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2164 . . 3  wff  C  e.  CC
83, 5, 7w3a 980 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 7879 . . . . 5  class  x.
101, 4, 9co 5919 . . . 4  class  ( A  x.  B )
1110, 6, 9co 5919 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 5919 . . . 4  class  ( B  x.  C )
131, 12, 9co 5919 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1364 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  8005
  Copyright terms: Public domain W3C validator