ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 8063
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8021. Proofs should normally use mulass 8091 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7958 . . . 4  class  CC
31, 2wcel 2178 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2178 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2178 . . 3  wff  C  e.  CC
83, 5, 7w3a 981 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 7965 . . . . 5  class  x.
101, 4, 9co 5967 . . . 4  class  ( A  x.  B )
1110, 6, 9co 5967 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 5967 . . . 4  class  ( B  x.  C )
131, 12, 9co 5967 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1373 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  8091
  Copyright terms: Public domain W3C validator