ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Unicode version

Axiom ax-mulass 7598
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axmulass 7558. Proofs should normally use mulass 7623 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7498 . . . 4  class  CC
31, 2wcel 1448 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 1448 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 1448 . . 3  wff  C  e.  CC
83, 5, 7w3a 930 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 cmul 7505 . . . . 5  class  x.
101, 4, 9co 5706 . . . 4  class  ( A  x.  B )
1110, 6, 9co 5706 . . 3  class  ( ( A  x.  B )  x.  C )
124, 6, 9co 5706 . . . 4  class  ( B  x.  C )
131, 12, 9co 5706 . . 3  class  ( A  x.  ( B  x.  C ) )
1411, 13wceq 1299 . 2  wff  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  mulass  7623
  Copyright terms: Public domain W3C validator