ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulass Unicode version

Theorem axmulass 7693
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7735. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )

Proof of Theorem axmulass
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7661 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 mulcnsrec 7663 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
3 mulcnsrec 7663 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) ) ,  ( ( w  .R  v )  +R  ( z  .R  u
) ) >. ] `'  _E  )
4 mulcnsrec 7663 . 2  |-  ( ( ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R.  /\  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( [ <. ( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) ) ,  ( ( y  .R  z )  +R  ( x  .R  w
) ) >. ] `'  _E  x.  [ <. v ,  u >. ] `'  _E  )  =  [ <. (
( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  v
)  +R  ( -1R 
.R  ( ( ( y  .R  z )  +R  ( x  .R  w ) )  .R  u ) ) ) ,  ( ( ( ( y  .R  z
)  +R  ( x  .R  w ) )  .R  v )  +R  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  u
) ) >. ] `'  _E  )
5 mulcnsrec 7663 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R.  /\  ( ( w  .R  v )  +R  (
z  .R  u )
)  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) ,  ( ( w  .R  v
)  +R  ( z  .R  u ) )
>. ] `'  _E  )  =  [ <. ( ( x  .R  ( ( z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) )  +R  ( -1R  .R  (
y  .R  ( (
w  .R  v )  +R  ( z  .R  u
) ) ) ) ) ,  ( ( y  .R  ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( x  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) ) >. ] `'  _E  )
6 mulclsr 7574 . . . . 5  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  e.  R. )
7 m1r 7572 . . . . . 6  |-  -1R  e.  R.
8 mulclsr 7574 . . . . . 6  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  e.  R. )
9 mulclsr 7574 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  w
)  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
107, 8, 9sylancr 410 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( -1R  .R  (
y  .R  w )
)  e.  R. )
11 addclsr 7573 . . . . 5  |-  ( ( ( x  .R  z
)  e.  R.  /\  ( -1R  .R  ( y  .R  w ) )  e.  R. )  -> 
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  e.  R. )
126, 10, 11syl2an 287 . . . 4  |-  ( ( ( x  e.  R.  /\  z  e.  R. )  /\  ( y  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
1312an4s 577 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  e.  R. )
14 mulclsr 7574 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  e.  R. )
15 mulclsr 7574 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  e.  R. )
16 addclsr 7573 . . . . 5  |-  ( ( ( y  .R  z
)  e.  R.  /\  ( x  .R  w
)  e.  R. )  ->  ( ( y  .R  z )  +R  (
x  .R  w )
)  e.  R. )
1714, 15, 16syl2anr 288 . . . 4  |-  ( ( ( x  e.  R.  /\  w  e.  R. )  /\  ( y  e.  R.  /\  z  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
1817an42s 578 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  e.  R. )
1913, 18jca 304 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  e.  R.  /\  (
( y  .R  z
)  +R  ( x  .R  w ) )  e.  R. ) )
20 mulclsr 7574 . . . . 5  |-  ( ( z  e.  R.  /\  v  e.  R. )  ->  ( z  .R  v
)  e.  R. )
21 mulclsr 7574 . . . . . 6  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( w  .R  u
)  e.  R. )
22 mulclsr 7574 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( w  .R  u
)  e.  R. )  ->  ( -1R  .R  (
w  .R  u )
)  e.  R. )
237, 21, 22sylancr 410 . . . . 5  |-  ( ( w  e.  R.  /\  u  e.  R. )  ->  ( -1R  .R  (
w  .R  u )
)  e.  R. )
24 addclsr 7573 . . . . 5  |-  ( ( ( z  .R  v
)  e.  R.  /\  ( -1R  .R  ( w  .R  u ) )  e.  R. )  -> 
( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) )  e.  R. )
2520, 23, 24syl2an 287 . . . 4  |-  ( ( ( z  e.  R.  /\  v  e.  R. )  /\  ( w  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
2625an4s 577 . . 3  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
27 mulclsr 7574 . . . . 5  |-  ( ( w  e.  R.  /\  v  e.  R. )  ->  ( w  .R  v
)  e.  R. )
28 mulclsr 7574 . . . . 5  |-  ( ( z  e.  R.  /\  u  e.  R. )  ->  ( z  .R  u
)  e.  R. )
29 addclsr 7573 . . . . 5  |-  ( ( ( w  .R  v
)  e.  R.  /\  ( z  .R  u
)  e.  R. )  ->  ( ( w  .R  v )  +R  (
z  .R  u )
)  e.  R. )
3027, 28, 29syl2anr 288 . . . 4  |-  ( ( ( z  e.  R.  /\  u  e.  R. )  /\  ( w  e.  R.  /\  v  e.  R. )
)  ->  ( (
w  .R  v )  +R  ( z  .R  u
) )  e.  R. )
3130an42s 578 . . 3  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
w  .R  v )  +R  ( z  .R  u
) )  e.  R. )
3226, 31jca 304 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) )  e.  R.  /\  (
( w  .R  v
)  +R  ( z  .R  u ) )  e.  R. ) )
33 simp1l 1005 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  x  e.  R. )
34 simp2l 1007 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  z  e.  R. )
35 simp3l 1009 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  v  e.  R. )
3634, 35, 20syl2anc 408 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( z  .R  v )  e.  R. )
37 mulclsr 7574 . . . . 5  |-  ( ( x  e.  R.  /\  ( z  .R  v
)  e.  R. )  ->  ( x  .R  (
z  .R  v )
)  e.  R. )
3833, 36, 37syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( z  .R  v
) )  e.  R. )
39 simp2r 1008 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  w  e.  R. )
40 simp3r 1010 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  u  e.  R. )
4139, 40, 21syl2anc 408 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( w  .R  u )  e.  R. )
427, 41, 22sylancr 410 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( w  .R  u
) )  e.  R. )
43 mulclsr 7574 . . . . 5  |-  ( ( x  e.  R.  /\  ( -1R  .R  ( w  .R  u ) )  e.  R. )  -> 
( x  .R  ( -1R  .R  ( w  .R  u ) ) )  e.  R. )
4433, 42, 43syl2anc 408 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
45 simp1r 1006 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  y  e.  R. )
4639, 35, 27syl2anc 408 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( w  .R  v )  e.  R. )
47 mulclsr 7574 . . . . . 6  |-  ( ( y  e.  R.  /\  ( w  .R  v
)  e.  R. )  ->  ( y  .R  (
w  .R  v )
)  e.  R. )
4845, 46, 47syl2anc 408 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( w  .R  v
) )  e.  R. )
49 mulclsr 7574 . . . . 5  |-  ( ( -1R  e.  R.  /\  ( y  .R  (
w  .R  v )
)  e.  R. )  ->  ( -1R  .R  (
y  .R  ( w  .R  v ) ) )  e.  R. )
507, 48, 49sylancr 410 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
w  .R  v )
) )  e.  R. )
51 addcomsrg 7575 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  =  ( g  +R  f ) )
5251adantl 275 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  +R  g
)  =  ( g  +R  f ) )
53 addasssrg 7576 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
5453adantl 275 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R.  /\  h  e.  R. ) )  ->  (
( f  +R  g
)  +R  h )  =  ( f  +R  ( g  +R  h
) ) )
5534, 40, 28syl2anc 408 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( z  .R  u )  e.  R. )
56 mulclsr 7574 . . . . . 6  |-  ( ( y  e.  R.  /\  ( z  .R  u
)  e.  R. )  ->  ( y  .R  (
z  .R  u )
)  e.  R. )
5745, 55, 56syl2anc 408 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( z  .R  u
) )  e.  R. )
58 mulclsr 7574 . . . . 5  |-  ( ( -1R  e.  R.  /\  ( y  .R  (
z  .R  u )
)  e.  R. )  ->  ( -1R  .R  (
y  .R  ( z  .R  u ) ) )  e.  R. )
597, 57, 58sylancr 410 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
z  .R  u )
) )  e.  R. )
60 addclsr 7573 . . . . 5  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  +R  g
)  e.  R. )
6160adantl 275 . . . 4  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  +R  g
)  e.  R. )
6238, 44, 50, 52, 54, 59, 61caov42d 5957 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  (
z  .R  v )
)  +R  ( x  .R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( w  .R  v
) ) )  +R  ( -1R  .R  (
y  .R  ( z  .R  u ) ) ) ) )  =  ( ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( z  .R  u
) ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) ) )
63 distrsrg 7579 . . . . 5  |-  ( ( x  e.  R.  /\  ( z  .R  v
)  e.  R.  /\  ( -1R  .R  ( w  .R  u ) )  e.  R. )  -> 
( x  .R  (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) ) )  =  ( ( x  .R  ( z  .R  v ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
6433, 36, 42, 63syl3anc 1216 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) ) )  =  ( ( x  .R  ( z  .R  v ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
65 distrsrg 7579 . . . . . . 7  |-  ( ( y  e.  R.  /\  ( w  .R  v
)  e.  R.  /\  ( z  .R  u
)  e.  R. )  ->  ( y  .R  (
( w  .R  v
)  +R  ( z  .R  u ) ) )  =  ( ( y  .R  ( w  .R  v ) )  +R  ( y  .R  ( z  .R  u
) ) ) )
6645, 46, 55, 65syl3anc 1216 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) )  =  ( ( y  .R  (
w  .R  v )
)  +R  ( y  .R  ( z  .R  u ) ) ) )
6766oveq2d 5790 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
( w  .R  v
)  +R  ( z  .R  u ) ) ) )  =  ( -1R  .R  ( ( y  .R  ( w  .R  v ) )  +R  ( y  .R  ( z  .R  u
) ) ) ) )
687a1i 9 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  -1R  e.  R. )
69 distrsrg 7579 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  (
w  .R  v )
)  e.  R.  /\  ( y  .R  (
z  .R  u )
)  e.  R. )  ->  ( -1R  .R  (
( y  .R  (
w  .R  v )
)  +R  ( y  .R  ( z  .R  u ) ) ) )  =  ( ( -1R  .R  ( y  .R  ( w  .R  v ) ) )  +R  ( -1R  .R  ( y  .R  (
z  .R  u )
) ) ) )
7068, 48, 57, 69syl3anc 1216 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  ( w  .R  v
) )  +R  (
y  .R  ( z  .R  u ) ) ) )  =  ( ( -1R  .R  ( y  .R  ( w  .R  v ) ) )  +R  ( -1R  .R  ( y  .R  (
z  .R  u )
) ) ) )
7167, 70eqtrd 2172 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
( w  .R  v
)  +R  ( z  .R  u ) ) ) )  =  ( ( -1R  .R  (
y  .R  ( w  .R  v ) ) )  +R  ( -1R  .R  ( y  .R  (
z  .R  u )
) ) ) )
7264, 71oveq12d 5792 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) )  +R  ( -1R  .R  (
y  .R  ( (
w  .R  v )  +R  ( z  .R  u
) ) ) ) )  =  ( ( ( x  .R  (
z  .R  v )
)  +R  ( x  .R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( w  .R  v
) ) )  +R  ( -1R  .R  (
y  .R  ( z  .R  u ) ) ) ) ) )
73 mulcomsrg 7577 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  .R  g
)  =  ( g  .R  f ) )
7473adantl 275 . . . . . 6  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  .R  g
)  =  ( g  .R  f ) )
75 distrsrg 7579 . . . . . . . . 9  |-  ( ( h  e.  R.  /\  f  e.  R.  /\  g  e.  R. )  ->  (
h  .R  ( f  +R  g ) )  =  ( ( h  .R  f )  +R  (
h  .R  g )
) )
76753coml 1188 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
h  .R  ( f  +R  g ) )  =  ( ( h  .R  f )  +R  (
h  .R  g )
) )
77 simp3 983 . . . . . . . . 9  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  h  e.  R. )
78603adant3 1001 . . . . . . . . 9  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
f  +R  g )  e.  R. )
79 mulcomsrg 7577 . . . . . . . . 9  |-  ( ( h  e.  R.  /\  ( f  +R  g
)  e.  R. )  ->  ( h  .R  (
f  +R  g ) )  =  ( ( f  +R  g )  .R  h ) )
8077, 78, 79syl2anc 408 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
h  .R  ( f  +R  g ) )  =  ( ( f  +R  g )  .R  h
) )
81 simp1 981 . . . . . . . . . 10  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  f  e.  R. )
82 mulcomsrg 7577 . . . . . . . . . 10  |-  ( ( h  e.  R.  /\  f  e.  R. )  ->  ( h  .R  f
)  =  ( f  .R  h ) )
8377, 81, 82syl2anc 408 . . . . . . . . 9  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
h  .R  f )  =  ( f  .R  h ) )
84 simp2 982 . . . . . . . . . 10  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  g  e.  R. )
85 mulcomsrg 7577 . . . . . . . . . 10  |-  ( ( h  e.  R.  /\  g  e.  R. )  ->  ( h  .R  g
)  =  ( g  .R  h ) )
8677, 84, 85syl2anc 408 . . . . . . . . 9  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
h  .R  g )  =  ( g  .R  h ) )
8783, 86oveq12d 5792 . . . . . . . 8  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( h  .R  f
)  +R  ( h  .R  g ) )  =  ( ( f  .R  h )  +R  ( g  .R  h
) ) )
8876, 80, 873eqtr3d 2180 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  +R  g
)  .R  h )  =  ( ( f  .R  h )  +R  ( g  .R  h
) ) )
8988adantl 275 . . . . . 6  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R.  /\  h  e.  R. ) )  ->  (
( f  +R  g
)  .R  h )  =  ( ( f  .R  h )  +R  ( g  .R  h
) ) )
90 mulasssrg 7578 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R.  /\  h  e.  R. )  ->  (
( f  .R  g
)  .R  h )  =  ( f  .R  ( g  .R  h
) ) )
9190adantl 275 . . . . . 6  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R.  /\  h  e.  R. ) )  ->  (
( f  .R  g
)  .R  h )  =  ( f  .R  ( g  .R  h
) ) )
92 mulclsr 7574 . . . . . . 7  |-  ( ( f  e.  R.  /\  g  e.  R. )  ->  ( f  .R  g
)  e.  R. )
9392adantl 275 . . . . . 6  |-  ( ( ( ( x  e. 
R.  /\  y  e.  R. )  /\  (
z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  /\  ( f  e.  R.  /\  g  e. 
R. ) )  -> 
( f  .R  g
)  e.  R. )
9445, 39, 8syl2anc 408 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  w )  e.  R. )
9574, 89, 91, 93, 33, 68, 34, 94, 35caovdilemd 5962 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  v )  =  ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( ( y  .R  w )  .R  v ) ) ) )
96 mulasssrg 7578 . . . . . . . 8  |-  ( ( y  e.  R.  /\  w  e.  R.  /\  v  e.  R. )  ->  (
( y  .R  w
)  .R  v )  =  ( y  .R  ( w  .R  v
) ) )
9745, 39, 35, 96syl3anc 1216 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  w )  .R  v )  =  ( y  .R  ( w  .R  v ) ) )
9897oveq2d 5790 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  w )  .R  v
) )  =  ( -1R  .R  ( y  .R  ( w  .R  v ) ) ) )
9998oveq2d 5790 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( z  .R  v ) )  +R  ( -1R  .R  (
( y  .R  w
)  .R  v )
) )  =  ( ( x  .R  (
z  .R  v )
)  +R  ( -1R 
.R  ( y  .R  ( w  .R  v
) ) ) ) )
10095, 99eqtrd 2172 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  v )  =  ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) ) )
10174, 89, 91, 93, 45, 33, 34, 39, 40caovdilemd 5962 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( y  .R  z
)  +R  ( x  .R  w ) )  .R  u )  =  ( ( y  .R  ( z  .R  u
) )  +R  (
x  .R  ( w  .R  u ) ) ) )
102101oveq2d 5790 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( ( y  .R  z )  +R  ( x  .R  w
) )  .R  u
) )  =  ( -1R  .R  ( ( y  .R  ( z  .R  u ) )  +R  ( x  .R  ( w  .R  u
) ) ) ) )
10393, 33, 41caovcld 5924 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( w  .R  u
) )  e.  R. )
104 distrsrg 7579 . . . . . 6  |-  ( ( -1R  e.  R.  /\  ( y  .R  (
z  .R  u )
)  e.  R.  /\  ( x  .R  (
w  .R  u )
)  e.  R. )  ->  ( -1R  .R  (
( y  .R  (
z  .R  u )
)  +R  ( x  .R  ( w  .R  u ) ) ) )  =  ( ( -1R  .R  ( y  .R  ( z  .R  u ) ) )  +R  ( -1R  .R  ( x  .R  (
w  .R  u )
) ) ) )
10568, 57, 103, 104syl3anc 1216 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  ( z  .R  u
) )  +R  (
x  .R  ( w  .R  u ) ) ) )  =  ( ( -1R  .R  ( y  .R  ( z  .R  u ) ) )  +R  ( -1R  .R  ( x  .R  (
w  .R  u )
) ) ) )
10668, 33, 41, 74, 91caov12d 5952 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( x  .R  (
w  .R  u )
) )  =  ( x  .R  ( -1R 
.R  ( w  .R  u ) ) ) )
107106oveq2d 5790 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( ( -1R  .R  ( y  .R  ( z  .R  u
) ) )  +R  ( -1R  .R  (
x  .R  ( w  .R  u ) ) ) )  =  ( ( -1R  .R  ( y  .R  ( z  .R  u ) ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
108102, 105, 1073eqtrd 2176 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( ( y  .R  z )  +R  ( x  .R  w
) )  .R  u
) )  =  ( ( -1R  .R  (
y  .R  ( z  .R  u ) ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
109100, 108oveq12d 5792 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  .R  v )  +R  ( -1R  .R  (
( ( y  .R  z )  +R  (
x  .R  w )
)  .R  u )
) )  =  ( ( ( x  .R  ( z  .R  v
) )  +R  ( -1R  .R  ( y  .R  ( w  .R  v
) ) ) )  +R  ( ( -1R 
.R  ( y  .R  ( z  .R  u
) ) )  +R  ( x  .R  ( -1R  .R  ( w  .R  u ) ) ) ) ) )
11062, 72, 1093eqtr4rd 2183 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( ( x  .R  z )  +R  ( -1R  .R  ( y  .R  w ) ) )  .R  v )  +R  ( -1R  .R  (
( ( y  .R  z )  +R  (
x  .R  w )
)  .R  u )
) )  =  ( ( x  .R  (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) ) )  +R  ( -1R 
.R  ( y  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) ) ) ) )
11193, 45, 36caovcld 5924 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( z  .R  v
) )  e.  R. )
11293, 45, 42caovcld 5924 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( -1R  .R  (
w  .R  u )
) )  e.  R. )
11393, 33, 46caovcld 5924 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( w  .R  v
) )  e.  R. )
11493, 33, 55caovcld 5924 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( z  .R  u
) )  e.  R. )
115111, 112, 113, 52, 54, 114, 61caov42d 5957 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( y  .R  (
z  .R  v )
)  +R  ( y  .R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( ( x  .R  ( w  .R  v ) )  +R  ( x  .R  (
z  .R  u )
) ) )  =  ( ( ( y  .R  ( z  .R  v ) )  +R  ( x  .R  (
w  .R  v )
) )  +R  (
( x  .R  (
z  .R  u )
)  +R  ( y  .R  ( -1R  .R  ( w  .R  u
) ) ) ) ) )
116 distrsrg 7579 . . . . 5  |-  ( ( y  e.  R.  /\  ( z  .R  v
)  e.  R.  /\  ( -1R  .R  ( w  .R  u ) )  e.  R. )  -> 
( y  .R  (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) ) )  =  ( ( y  .R  ( z  .R  v ) )  +R  ( y  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
11745, 36, 42, 116syl3anc 1216 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( y  .R  ( ( z  .R  v )  +R  ( -1R  .R  ( w  .R  u ) ) ) )  =  ( ( y  .R  ( z  .R  v ) )  +R  ( y  .R  ( -1R  .R  ( w  .R  u ) ) ) ) )
118 distrsrg 7579 . . . . 5  |-  ( ( x  e.  R.  /\  ( w  .R  v
)  e.  R.  /\  ( z  .R  u
)  e.  R. )  ->  ( x  .R  (
( w  .R  v
)  +R  ( z  .R  u ) ) )  =  ( ( x  .R  ( w  .R  v ) )  +R  ( x  .R  ( z  .R  u
) ) ) )
11933, 46, 55, 118syl3anc 1216 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( x  .R  ( ( w  .R  v )  +R  (
z  .R  u )
) )  =  ( ( x  .R  (
w  .R  v )
)  +R  ( x  .R  ( z  .R  u ) ) ) )
120117, 119oveq12d 5792 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  ( (
z  .R  v )  +R  ( -1R  .R  (
w  .R  u )
) ) )  +R  ( x  .R  (
( w  .R  v
)  +R  ( z  .R  u ) ) ) )  =  ( ( ( y  .R  ( z  .R  v
) )  +R  (
y  .R  ( -1R  .R  ( w  .R  u
) ) ) )  +R  ( ( x  .R  ( w  .R  v ) )  +R  ( x  .R  (
z  .R  u )
) ) ) )
12174, 89, 91, 93, 45, 33, 34, 39, 35caovdilemd 5962 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( y  .R  z
)  +R  ( x  .R  w ) )  .R  v )  =  ( ( y  .R  ( z  .R  v
) )  +R  (
x  .R  ( w  .R  v ) ) ) )
12274, 89, 91, 93, 33, 68, 34, 94, 40caovdilemd 5962 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  u )  =  ( ( x  .R  ( z  .R  u
) )  +R  ( -1R  .R  ( ( y  .R  w )  .R  u ) ) ) )
123 mulasssrg 7578 . . . . . . . . 9  |-  ( ( y  e.  R.  /\  w  e.  R.  /\  u  e.  R. )  ->  (
( y  .R  w
)  .R  u )  =  ( y  .R  ( w  .R  u
) ) )
12445, 39, 40, 123syl3anc 1216 . . . . . . . 8  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
y  .R  w )  .R  u )  =  ( y  .R  ( w  .R  u ) ) )
125124oveq2d 5790 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  w )  .R  u
) )  =  ( -1R  .R  ( y  .R  ( w  .R  u ) ) ) )
12668, 45, 41, 74, 91caov12d 5952 . . . . . . 7  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( y  .R  (
w  .R  u )
) )  =  ( y  .R  ( -1R 
.R  ( w  .R  u ) ) ) )
127125, 126eqtrd 2172 . . . . . 6  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( -1R  .R  ( ( y  .R  w )  .R  u
) )  =  ( y  .R  ( -1R 
.R  ( w  .R  u ) ) ) )
128127oveq2d 5790 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
x  .R  ( z  .R  u ) )  +R  ( -1R  .R  (
( y  .R  w
)  .R  u )
) )  =  ( ( x  .R  (
z  .R  u )
)  +R  ( y  .R  ( -1R  .R  ( w  .R  u
) ) ) ) )
129122, 128eqtrd 2172 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( x  .R  z
)  +R  ( -1R 
.R  ( y  .R  w ) ) )  .R  u )  =  ( ( x  .R  ( z  .R  u
) )  +R  (
y  .R  ( -1R  .R  ( w  .R  u
) ) ) ) )
130121, 129oveq12d 5792 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( ( y  .R  z )  +R  (
x  .R  w )
)  .R  v )  +R  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  u
) )  =  ( ( ( y  .R  ( z  .R  v
) )  +R  (
x  .R  ( w  .R  v ) ) )  +R  ( ( x  .R  ( z  .R  u ) )  +R  ( y  .R  ( -1R  .R  ( w  .R  u ) ) ) ) ) )
131115, 120, 1303eqtr4rd 2183 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )  /\  ( v  e.  R.  /\  u  e.  R. )
)  ->  ( (
( ( y  .R  z )  +R  (
x  .R  w )
)  .R  v )  +R  ( ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  .R  u
) )  =  ( ( y  .R  (
( z  .R  v
)  +R  ( -1R 
.R  ( w  .R  u ) ) ) )  +R  ( x  .R  ( ( w  .R  v )  +R  ( z  .R  u
) ) ) ) )
1321, 2, 3, 4, 5, 19, 32, 110, 131ecoviass 6539 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480    _E cep 4209   `'ccnv 4538  (class class class)co 5774   R.cnr 7117   -1Rcm1r 7120    +R cplr 7121    .R cmr 7122   CCcc 7630    x. cmul 7637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-pli 7125  df-mi 7126  df-lti 7127  df-plpq 7164  df-mpq 7165  df-enq 7167  df-nqqs 7168  df-plqqs 7169  df-mqqs 7170  df-1nqqs 7171  df-rq 7172  df-ltnqqs 7173  df-enq0 7244  df-nq0 7245  df-0nq0 7246  df-plq0 7247  df-mq0 7248  df-inp 7286  df-i1p 7287  df-iplp 7288  df-imp 7289  df-enr 7546  df-nr 7547  df-plr 7548  df-mr 7549  df-m1r 7553  df-c 7638  df-mul 7644
This theorem is referenced by:  rereceu  7709  recriota  7710
  Copyright terms: Public domain W3C validator