![]() |
Intuitionistic Logic Explorer Theorem List (p. 80 of 149) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | axpre-suploc 7901* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 7932. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-cnex 7902 | The complex numbers form a set. Proofs should normally use cnex 7935 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.) |
![]() ![]() ![]() ![]() | ||
Axiom | ax-resscn 7903 | The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7859. (Contributed by NM, 1-Mar-1995.) |
![]() ![]() ![]() ![]() | ||
Axiom | ax-1cn 7904 | 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7860. (Contributed by NM, 1-Mar-1995.) |
![]() ![]() ![]() ![]() | ||
Axiom | ax-1re 7905 | 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7861. Proofs should use 1re 7956 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.) |
![]() ![]() ![]() ![]() | ||
Axiom | ax-icn 7906 |
![]() |
![]() ![]() ![]() ![]() | ||
Axiom | ax-addcl 7907 | Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7863. Proofs should normally use addcl 7936 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-addrcl 7908 | Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7864. Proofs should normally use readdcl 7937 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-mulcl 7909 | Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7865. Proofs should normally use mulcl 7938 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-mulrcl 7910 | Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7866. Proofs should normally use remulcl 7939 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-addcom 7911 | Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7869. Proofs should normally use addcom 8094 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-mulcom 7912 | Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7870. Proofs should normally use mulcom 7940 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-addass 7913 | Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7871. Proofs should normally use addass 7941 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-mulass 7914 | Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7872. Proofs should normally use mulass 7942 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-distr 7915 | Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7873. Proofs should normally use adddi 7943 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-i2m1 7916 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7874. (Contributed by NM, 29-Jan-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-0lt1 7917 | 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7875. Proofs should normally use 0lt1 8084 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.) |
![]() ![]() ![]() ![]() | ||
Axiom | ax-1rid 7918 |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-0id 7919 |
![]() Proofs should normally use addid1 8095 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-rnegex 7920* | Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7878. (Contributed by Eric Schmidt, 21-May-2007.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-precex 7921* | Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7879. (Contributed by Jim Kingdon, 6-Feb-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-cnre 7922* | A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7880. For naming consistency, use cnre 7953 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-ltirr 7923 | Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 7923. (Contributed by Jim Kingdon, 12-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-ltwlin 7924 | Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7882. (Contributed by Jim Kingdon, 12-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-lttrn 7925 | Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7883. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-apti 7926 | Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7884. (Contributed by Jim Kingdon, 29-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-ltadd 7927 | Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7885. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-mulgt0 7928 | The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7886. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-mulext 7929 |
Strong extensionality of multiplication (expressed in terms of ![]() (Contributed by Jim Kingdon, 18-Feb-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-arch 7930* |
Archimedean axiom. Definition 3.1(2) of [Geuvers], p. 9. Axiom for
real and complex numbers, justified by Theorem axarch 7890.
This axiom should not be used directly; instead use arch 9173
(which is the
same, but stated in terms of |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-caucvg 7931* |
Completeness. Axiom for real and complex numbers, justified by Theorem
axcaucvg 7899.
A Cauchy sequence (as defined here, which has a rate convergence built
in) of real numbers converges to a real number. Specifically on rate of
convergence, all terms after the nth term must be within
This axiom should not be used directly; instead use caucvgre 10990 (which is
the same, but stated in terms of the |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-pre-suploc 7932* |
An inhabited, bounded-above, located set of reals has a supremum.
Locatedness here means that given Although this and ax-caucvg 7931 are both completeness properties, countable choice would probably be needed to derive this from ax-caucvg 7931. (Contributed by Jim Kingdon, 23-Jan-2024.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-addf 7933 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 7936 should be used. Note that uses of ax-addf 7933 can
be eliminated by using the defined operation
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() This axiom is justified by Theorem axaddf 7867. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Axiom | ax-mulf 7934 |
Multiplication is an operation on the complex numbers. This deprecated
axiom is provided for historical compatibility but is not a bona fide
axiom for complex numbers (independent of set theory) since it cannot be
interpreted as a first- or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific ax-mulcl 7909 should be used. Note that uses of ax-mulf 7934
can be eliminated by using the defined operation
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() This axiom is justified by Theorem axmulf 7868. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cnex 7935 | Alias for ax-cnex 7902. (Contributed by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() | ||
Theorem | addcl 7936 | Alias for ax-addcl 7907, for naming consistency with addcli 7961. Use this theorem instead of ax-addcl 7907 or axaddcl 7863. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | readdcl 7937 | Alias for ax-addrcl 7908, for naming consistency with readdcli 7970. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcl 7938 | Alias for ax-mulcl 7909, for naming consistency with mulcli 7962. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | remulcl 7939 | Alias for ax-mulrcl 7910, for naming consistency with remulcli 7971. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcom 7940 | Alias for ax-mulcom 7912, for naming consistency with mulcomi 7963. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addass 7941 | Alias for ax-addass 7913, for naming consistency with addassi 7965. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulass 7942 | Alias for ax-mulass 7914, for naming consistency with mulassi 7966. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddi 7943 | Alias for ax-distr 7915, for naming consistency with adddii 7967. (Contributed by NM, 10-Mar-2008.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | recn 7944 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | reex 7945 | The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.) |
![]() ![]() ![]() ![]() | ||
Theorem | reelprrecn 7946 | Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | cnelprrecn 7947 | Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddir 7948 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 0cn 7949 | 0 is a complex number. (Contributed by NM, 19-Feb-2005.) |
![]() ![]() ![]() ![]() | ||
Theorem | 0cnd 7950 | 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | c0ex 7951 | 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
![]() ![]() ![]() ![]() | ||
Theorem | 1ex 7952 | 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.) |
![]() ![]() ![]() ![]() | ||
Theorem | cnre 7953* | Alias for ax-cnre 7922, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulrid 7954 |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mullid 7955 | Identity law for multiplication. Note: see mulrid 7954 for commuted version. (Contributed by NM, 8-Oct-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1re 7956 |
![]() |
![]() ![]() ![]() ![]() | ||
Theorem | 0re 7957 |
![]() |
![]() ![]() ![]() ![]() | ||
Theorem | 0red 7958 |
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulid1i 7959 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mullidi 7960 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addcli 7961 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcli 7962 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcomi 7963 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcomli 7964 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addassi 7965 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulassi 7966 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddii 7967 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddiri 7968 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | recni 7969 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | readdcli 7970 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | remulcli 7971 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1red 7972 | 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | 1cnd 7973 | 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulridd 7974 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mullidd 7975 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulid2d 7976 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addcld 7977 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcld 7978 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulcomd 7979 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | addassd 7980 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | mulassd 7981 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddid 7982 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddird 7983 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | adddirp1d 7984 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | joinlmuladdmuld 7985 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | recnd 7986 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | readdcld 7987 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | remulcld 7988 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Syntax | cpnf 7989 | Plus infinity. |
![]() ![]() | ||
Syntax | cmnf 7990 | Minus infinity. |
![]() ![]() | ||
Syntax | cxr 7991 | The set of extended reals (includes plus and minus infinity). |
![]() ![]() | ||
Syntax | clt 7992 | 'Less than' predicate (extended to include the extended reals). |
![]() ![]() | ||
Syntax | cle 7993 | Extend wff notation to include the 'less than or equal to' relation. |
![]() ![]() | ||
Definition | df-pnf 7994 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]()
A simpler possibility is to define |
![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-mnf 7995 |
Define minus infinity as the power set of plus infinity. Note that the
definition is arbitrary, requiring only that ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() | ||
Definition | df-xr 7996 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-ltxr 7997* |
Define 'less than' on the set of extended reals. Definition 12-3.1 of
[Gleason] p. 173. Note that in our
postulates for complex numbers,
![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-le 7998 | Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | pnfnre 7999 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() | ||
Theorem | mnfnre 8000 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |