HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcmul 7901 Multiplication on complex numbers. The token  x. is a center dot.
 class  x.
 
Definitiondf-c 7902 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 CC  =  ( R. 
 X.  R. )
 
Definitiondf-0 7903 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
 |-  0  =  <. 0R ,  0R >.
 
Definitiondf-1 7904 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
 |-  1  =  <. 1R ,  0R >.
 
Definitiondf-i 7905 Define the complex number  _i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
 |-  _i  =  <. 0R ,  1R >.
 
Definitiondf-r 7906 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 RR  =  ( R. 
 X.  { 0R } )
 
Definitiondf-add 7907* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
 |- 
 +  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( w  +R  u ) ,  ( v  +R  f ) >. ) ) }
 
Definitiondf-mul 7908* Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.)
 |- 
 x.  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v 
 .R  u )  +R  ( w  .R  f ) ) >. ) ) }
 
Definitiondf-lt 7909* Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  = 
 <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
 
Theoremopelcn 7910 Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
 |-  ( <. A ,  B >.  e.  CC  <->  ( A  e.  R. 
 /\  B  e.  R. ) )
 
Theoremopelreal 7911 Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
 
Theoremelreal 7912* Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.)
 |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelrealeu 7913* The real number mapping in elreal 7912 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelreal2 7914 Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
 |-  ( A  e.  RR  <->  (
 ( 1st `  A )  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
 
Theorem0ncn 7915 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7916 which is a related property. (Contributed by NM, 2-May-1996.)
 |- 
 -.  (/)  e.  CC
 
Theoremcnm 7916* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
Theoremltrelre 7917 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  C_  ( RR  X.  RR )
 
Theoremaddcnsr 7918 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D ) >. )
 
Theoremmulcnsr 7919 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  (
 ( B  .R  C )  +R  ( A  .R  D ) ) >. )
 
Theoremeqresr 7920 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  A  e.  _V   =>    |-  ( <. A ,  0R >.  =  <. B ,  0R >. 
 <->  A  =  B )
 
Theoremaddresr 7921 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
 
Theoremmulresr 7922 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
 
Theoremltresr 7923 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  <RR 
 <. B ,  0R >.  <->  A  <R  B )
 
Theoremltresr2 7924 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <-> 
 ( 1st `  A )  <R  ( 1st `  B ) ) )
 
Theoremdfcnqs 7925 Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in  CC from those in  R.. The trick involves qsid 6668, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that  CC is a quotient set, even though it is not (compare df-c 7902), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
 |- 
 CC  =  ( ( R.  X.  R. ) /. `'  _E  )
 
Theoremaddcnsrec 7926 Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7925 and mulcnsrec 7927. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C ) ,  ( B  +R  D ) >. ] `'  _E  )
 
Theoremmulcnsrec 7927 Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6667, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7925. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  x.  [
 <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B 
 .R  C )  +R  ( A  .R  D ) ) >. ] `'  _E  )
 
Theoremaddvalex 7928 Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 8021. (Contributed by Jim Kingdon, 14-Jul-2021.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B )  e.  _V )
 
Theorempitonnlem1 7929* Lemma for pitonn 7932. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |- 
 <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
 
Theorempitonnlem1p1 7930 Lemma for pitonn 7932. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  ( 1P  +P.  1P )
 ) ,  ( 1P 
 +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  )
 
Theorempitonnlem2 7931* Lemma for pitonn 7932. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l  <Q  [
 <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ] 
 ~Q  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitonn 7932* Mapping from  N. to  NN. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) } )
 
Theorempitoregt0 7933* Embedding from  N. to  RR yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  0  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitore 7934* Embedding from  N. to  RR. Similar to pitonn 7932 but separate in the sense that we have not proved nnssre 9011 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theoremrecnnre 7935* Embedding the reciprocal of a natural number into  RR. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theorempeano1nnnn 7936* One is an element of  NN. This is a counterpart to 1nn 9018 designed for real number axioms which involve natural numbers (notably, axcaucvg 7984). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  1  e.  N
 
Theorempeano2nnnn 7937* A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 9019 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7984). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  ( A  +  1 )  e.  N )
 
Theoremltrennb 7938* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  ( ( J  e.  N. 
 /\  K  e.  N. )  ->  ( J  <N  K  <->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
 
Theoremltrenn 7939* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 12-Jul-2021.)
 |-  ( J  <N  K  ->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremrecidpipr 7940* Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ] 
 ~Q  <Q  u } >.  .P.  <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
 
Theoremrecidpirqlemcalc 7941 Lemma for recidpirq 7942. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  ( A  .P.  B )  =  1P )   =>    |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) ) 
 +P.  1P )  =  ( ( ( ( A 
 +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P )
 ) )  +P.  ( 1P  +P.  1P ) ) )
 
Theoremrecidpirq 7942* A real number times its reciprocal is one, where reciprocal is expressed with  *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
 <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
 
4.1.2  Final derivation of real and complex number postulates
 
Theoremaxcnex 7943 The complex numbers form a set. Use cnex 8020 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
 |- 
 CC  e.  _V
 
Theoremaxresscn 7944 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7988. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
 |- 
 RR  C_  CC
 
Theoremax1cn 7945 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 7989. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
 |-  1  e.  CC
 
Theoremax1re 7946 1 is a real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1re 7990.

In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 7989 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)

 |-  1  e.  RR
 
Theoremaxicn 7947  _i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7991. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
 |-  _i  e.  CC
 
Theoremaxaddcl 7948 Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7992 be used later. Instead, in most cases use addcl 8021. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Theoremaxaddrcl 7949 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7993 be used later. Instead, in most cases use readdcl 8022. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Theoremaxmulcl 7950 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7994 be used later. Instead, in most cases use mulcl 8023. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Theoremaxmulrcl 7951 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7995 be used later. Instead, in most cases use remulcl 8024. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Theoremaxaddf 7952 Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 7948. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 8018. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 +  : ( CC 
 X.  CC ) --> CC
 
Theoremaxmulf 7953 Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 8019 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 8023. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 x.  : ( CC 
 X.  CC ) --> CC
 
Theoremaxaddcom 7954 Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 7996 be used later. Instead, use addcom 8180.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Theoremaxmulcom 7955 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7997 be used later. Instead, use mulcom 8025. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaxaddass 7956 Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7998 be used later. Instead, use addass 8026. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Theoremaxmulass 7957 Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7999. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremaxdistr 7958 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 8000 be used later. Instead, use adddi 8028. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremaxi2m1 7959 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 8001. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Theoremax0lt1 7960 0 is less than 1. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0lt1 8002.

The version of this axiom in the Metamath Proof Explorer reads  1  =/=  0; here we change it to  0  <RR  1. The proof of  0  <RR  1 from  1  =/=  0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)

 |-  0  <RR  1
 
Theoremax1rid 7961  1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 8003. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Theoremax0id 7962  0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 8004.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Theoremaxrnegex 7963* Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 8005. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Theoremaxprecex 7964* Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 8006.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Theoremaxcnre 7965* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 8007. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremaxpre-ltirr 7966 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 8008. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Theoremaxpre-ltwlin 7967 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 8009. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Theoremaxpre-lttrn 7968 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 8010. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Theoremaxpre-apti 7969 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 8011.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Theoremaxpre-ltadd 7970 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 8012. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
 
Theoremaxpre-mulgt0 7971 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 8013. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0 
 <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
 
Theoremaxpre-mulext 7972 Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 8014.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C )  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
 
Theoremrereceu 7973* The reciprocal from axprecex 7964 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E! x  e.  RR  ( A  x.  x )  =  1 )
 
Theoremrecriota 7974* Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( N  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremaxarch 7975* Archimedean axiom. The Archimedean property is more naturally stated once we have defined  NN. Unless we find another way to state it, we'll just use the right hand side of dfnn2 9009 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 8015. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
 y  +  1 )  e.  x ) } A  <RR  n )
 
Theorempeano5nnnn 7976* Peano's inductive postulate. This is a counterpart to peano5nni 9010 designed for real number axioms which involve natural numbers (notably, axcaucvg 7984). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
 
Theoremnnindnn 7977* Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9023 designed for real number axioms which involve natural numbers (notably, axcaucvg 7984). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( z  =  1  ->  ( ph  <->  ps ) )   &    |-  ( z  =  k  ->  ( ph  <->  ch ) )   &    |-  ( z  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( z  =  A  ->  ( ph  <->  ta ) )   &    |-  ps   &    |-  ( k  e.  N  ->  ( ch  ->  th ) )   =>    |-  ( A  e.  N  ->  ta )
 
Theoremnntopi 7978* Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
 
Theoremaxcaucvglemcl 7979* Lemma for axcaucvg 7984. Mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   =>    |-  (
 ( ph  /\  J  e.  N. )  ->  ( iota_ z  e. 
 R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e. 
 R. )
 
Theoremaxcaucvglemf 7980* Lemma for axcaucvg 7984. Mapping to  N. and  R. yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  G : N.
 --> R. )
 
Theoremaxcaucvglemval 7981* Lemma for axcaucvg 7984. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( F `  <. [ <. ( <. { l  |  l  <Q  [
 <. J ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
 
Theoremaxcaucvglemcau 7982* Lemma for axcaucvg 7984. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  A. n  e. 
 N.  A. k  e.  N.  ( n  <N  k  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremaxcaucvglemres 7983* Lemma for axcaucvg 7984. Mapping the limit from  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Theoremaxcaucvg 7984* Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 
1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for  NN or division, we use  N for the natural numbers and express a reciprocal in terms of  iota_.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 8016. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Theoremaxpre-suploclemres 7985* Lemma for axpre-suploc 7986. The result. The proof just needs to define  B as basically the same set as  A (but expressed as a subset of  R. rather than a subset of  RR), and apply suplocsr 7893. (Contributed by Jim Kingdon, 24-Jan-2024.)
 |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y 
 <RR  x )   &    |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )   &    |-  B  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
 y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
Theoremaxpre-suploc 7986* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8017. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
4.1.3  Real and complex number postulates restated as axioms
 
Axiomax-cnex 7987 The complex numbers form a set. Proofs should normally use cnex 8020 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.)
 |- 
 CC  e.  _V
 
Axiomax-resscn 7988 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7944. (Contributed by NM, 1-Mar-1995.)
 |- 
 RR  C_  CC
 
Axiomax-1cn 7989 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7945. (Contributed by NM, 1-Mar-1995.)
 |-  1  e.  CC
 
Axiomax-1re 7990 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7946. Proofs should use 1re 8042 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
 |-  1  e.  RR
 
Axiomax-icn 7991  _i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7947. (Contributed by NM, 1-Mar-1995.)
 |-  _i  e.  CC
 
Axiomax-addcl 7992 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7948. Proofs should normally use addcl 8021 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Axiomax-addrcl 7993 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7949. Proofs should normally use readdcl 8022 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Axiomax-mulcl 7994 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7950. Proofs should normally use mulcl 8023 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Axiomax-mulrcl 7995 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7951. Proofs should normally use remulcl 8024 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Axiomax-addcom 7996 Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7954. Proofs should normally use addcom 8180 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Axiomax-mulcom 7997 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7955. Proofs should normally use mulcom 8025 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Axiomax-addass 7998 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7956. Proofs should normally use addass 8026 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Axiomax-mulass 7999 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7957. Proofs should normally use mulass 8027 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Axiomax-distr 8000 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7958. Proofs should normally use adddi 8028 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >