HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem0ncn 7901 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7902 which is a related property. (Contributed by NM, 2-May-1996.)
 |- 
 -.  (/)  e.  CC
 
Theoremcnm 7902* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
Theoremltrelre 7903 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  C_  ( RR  X.  RR )
 
Theoremaddcnsr 7904 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D ) >. )
 
Theoremmulcnsr 7905 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  (
 ( B  .R  C )  +R  ( A  .R  D ) ) >. )
 
Theoremeqresr 7906 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  A  e.  _V   =>    |-  ( <. A ,  0R >.  =  <. B ,  0R >. 
 <->  A  =  B )
 
Theoremaddresr 7907 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
 
Theoremmulresr 7908 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
 
Theoremltresr 7909 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  <RR 
 <. B ,  0R >.  <->  A  <R  B )
 
Theoremltresr2 7910 Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  <-> 
 ( 1st `  A )  <R  ( 1st `  B ) ) )
 
Theoremdfcnqs 7911 Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in  CC from those in  R.. The trick involves qsid 6661, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that  CC is a quotient set, even though it is not (compare df-c 7888), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.)
 |- 
 CC  =  ( ( R.  X.  R. ) /. `'  _E  )
 
Theoremaddcnsrec 7912 Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 7911 and mulcnsrec 7913. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  +  [ <. C ,  D >. ] `'  _E  )  =  [ <. ( A  +R  C ) ,  ( B  +R  D ) >. ] `'  _E  )
 
Theoremmulcnsrec 7913 Technical trick to permit re-use of some equivalence class lemmas for operation laws. The trick involves ecidg 6660, which shows that the coset of the converse epsilon relation (which is not an equivalence relation) leaves a set unchanged. See also dfcnqs 7911. (Contributed by NM, 13-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( [ <. A ,  B >. ] `'  _E  x.  [
 <. C ,  D >. ] `'  _E  )  =  [ <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B 
 .R  C )  +R  ( A  .R  D ) ) >. ] `'  _E  )
 
Theoremaddvalex 7914 Existence of a sum. This is dependent on how we define  + so once we proceed to real number axioms we will replace it with theorems such as addcl 8007. (Contributed by Jim Kingdon, 14-Jul-2021.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +  B )  e.  _V )
 
Theorempitonnlem1 7915* Lemma for pitonn 7918. Two ways to write the number one. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |- 
 <. [ <. ( <. { l  |  l  <Q  [ <. 1o ,  1o >. ]  ~Q  } ,  { u  |  [ <. 1o ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  1
 
Theorempitonnlem1p1 7916 Lemma for pitonn 7918. Simplifying an expression involving signed reals. (Contributed by Jim Kingdon, 26-Apr-2020.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  ( 1P  +P.  1P )
 ) ,  ( 1P 
 +P.  1P ) >. ]  ~R  =  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  )
 
Theorempitonnlem2 7917* Lemma for pitonn 7918. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
 |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l  <Q  [
 <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ] 
 ~Q  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitonn 7918* Mapping from  N. to  NN. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) } )
 
Theorempitoregt0 7919* Embedding from  N. to  RR yields a number greater than zero. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  0  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theorempitore 7920* Embedding from  N. to  RR. Similar to pitonn 7918 but separate in the sense that we have not proved nnssre 8997 yet. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theoremrecnnre 7921* Embedding the reciprocal of a natural number into  RR. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  -> 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  RR )
 
Theorempeano1nnnn 7922* One is an element of  NN. This is a counterpart to 1nn 9004 designed for real number axioms which involve natural numbers (notably, axcaucvg 7970). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  1  e.  N
 
Theorempeano2nnnn 7923* A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 9005 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7970). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  ( A  +  1 )  e.  N )
 
Theoremltrennb 7924* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  ( ( J  e.  N. 
 /\  K  e.  N. )  ->  ( J  <N  K  <->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
 
Theoremltrenn 7925* Ordering of natural numbers with 
<N or  <RR. (Contributed by Jim Kingdon, 12-Jul-2021.)
 |-  ( J  <N  K  ->  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l  <Q  [
 <. K ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremrecidpipr 7926* Another way of saying that a number times its reciprocal is one. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. { l  |  l  <Q  [ <. N ,  1o >. ]  ~Q  } ,  { u  |  [ <. N ,  1o >. ] 
 ~Q  <Q  u } >.  .P.  <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >. )  =  1P )
 
Theoremrecidpirqlemcalc 7927 Lemma for recidpirq 7928. Rearranging some of the expressions. (Contributed by Jim Kingdon, 17-Jul-2021.)
 |-  ( ph  ->  A  e.  P. )   &    |-  ( ph  ->  B  e.  P. )   &    |-  ( ph  ->  ( A  .P.  B )  =  1P )   =>    |-  ( ph  ->  ( ( ( ( A  +P.  1P )  .P.  ( B  +P.  1P ) )  +P.  ( 1P  .P.  1P ) ) 
 +P.  1P )  =  ( ( ( ( A 
 +P.  1P )  .P.  1P )  +P.  ( 1P  .P.  ( B  +P.  1P )
 ) )  +P.  ( 1P  +P.  1P ) ) )
 
Theoremrecidpirq 7928* A real number times its reciprocal is one, where reciprocal is expressed with  *Q. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( N  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  <. [ <. (
 <. { l  |  l 
 <Q  ( *Q `  [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ,  0R >. )  =  1 )
 
4.1.2  Final derivation of real and complex number postulates
 
Theoremaxcnex 7929 The complex numbers form a set. Use cnex 8006 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
 |- 
 CC  e.  _V
 
Theoremaxresscn 7930 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 7974. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
 |- 
 RR  C_  CC
 
Theoremax1cn 7931 1 is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 7975. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.)
 |-  1  e.  CC
 
Theoremax1re 7932 1 is a real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1re 7976.

In the Metamath Proof Explorer, this is not a complex number axiom but is proved from ax-1cn 7975 and the other axioms. It is not known whether we can do so here, but the Metamath Proof Explorer proof (accessed 13-Jan-2020) uses excluded middle. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)

 |-  1  e.  RR
 
Theoremaxicn 7933  _i is a complex number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 7977. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.)
 |-  _i  e.  CC
 
Theoremaxaddcl 7934 Closure law for addition of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 7978 be used later. Instead, in most cases use addcl 8007. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Theoremaxaddrcl 7935 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7979 be used later. Instead, in most cases use readdcl 8008. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Theoremaxmulcl 7936 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 7980 be used later. Instead, in most cases use mulcl 8009. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Theoremaxmulrcl 7937 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 7981 be used later. Instead, in most cases use remulcl 8010. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Theoremaxaddf 7938 Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 7934. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 8004. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 +  : ( CC 
 X.  CC ) --> CC
 
Theoremaxmulf 7939 Multiplication is an operation on the complex numbers. This is the construction-dependent version of ax-mulf 8005 and it should not be referenced outside the construction. We generally prefer to develop our theory using the less specific mulcl 8009. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.)
 |- 
 x.  : ( CC 
 X.  CC ) --> CC
 
Theoremaxaddcom 7940 Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 7982 be used later. Instead, use addcom 8166.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Theoremaxmulcom 7941 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7983 be used later. Instead, use mulcom 8011. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaxaddass 7942 Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7984 be used later. Instead, use addass 8012. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Theoremaxmulass 7943 Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 7985. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremaxdistr 7944 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7986 be used later. Instead, use adddi 8014. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremaxi2m1 7945 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 7987. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Theoremax0lt1 7946 0 is less than 1. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0lt1 7988.

The version of this axiom in the Metamath Proof Explorer reads  1  =/=  0; here we change it to  0  <RR  1. The proof of  0  <RR  1 from  1  =/=  0 in the Metamath Proof Explorer (accessed 12-Jan-2020) relies on real number trichotomy. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)

 |-  0  <RR  1
 
Theoremax1rid 7947  1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7989. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Theoremax0id 7948  0 is an identity element for real addition. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-0id 7990.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Theoremaxrnegex 7949* Existence of negative of real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex 7991. (Contributed by NM, 15-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Theoremaxprecex 7950* Existence of positive reciprocal of positive real number. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-precex 7992.

In treatments which assume excluded middle, the  0 
<RR  A condition is generally replaced by  A  =/=  0, and it may not be necessary to state that the reciproacal is positive. (Contributed by Jim Kingdon, 6-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Theoremaxcnre 7951* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre 7993. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremaxpre-ltirr 7952 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7994. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Theoremaxpre-ltwlin 7953 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltwlin 7995. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Theoremaxpre-lttrn 7954 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttrn 7996. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Theoremaxpre-apti 7955 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-apti 7997.

(Contributed by Jim Kingdon, 29-Jan-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Theoremaxpre-ltadd 7956 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltadd 7998. (Contributed by NM, 11-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
 
Theoremaxpre-mulgt0 7957 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 7999. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0 
 <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
 
Theoremaxpre-mulext 7958 Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulext 8000.

(Contributed by Jim Kingdon, 18-Feb-2020.) (New usage is discouraged.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C )  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
 
Theoremrereceu 7959* The reciprocal from axprecex 7950 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E! x  e.  RR  ( A  x.  x )  =  1 )
 
Theoremrecriota 7960* Two ways to express the reciprocal of a natural number. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( N  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [
 <. N ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. N ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
 <. [ <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. N ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. N ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
 
Theoremaxarch 7961* Archimedean axiom. The Archimedean property is more naturally stated once we have defined  NN. Unless we find another way to state it, we'll just use the right hand side of dfnn2 8995 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 8001. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

 |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
 y  +  1 )  e.  x ) } A  <RR  n )
 
Theorempeano5nnnn 7962* Peano's inductive postulate. This is a counterpart to peano5nni 8996 designed for real number axioms which involve natural numbers (notably, axcaucvg 7970). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( ( 1  e.  A  /\  A. z  e.  A  ( z  +  1 )  e.  A )  ->  N  C_  A )
 
Theoremnnindnn 7963* Principle of Mathematical Induction (inference schema). This is a counterpart to nnind 9009 designed for real number axioms which involve natural numbers (notably, axcaucvg 7970). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( z  =  1  ->  ( ph  <->  ps ) )   &    |-  ( z  =  k  ->  ( ph  <->  ch ) )   &    |-  ( z  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( z  =  A  ->  ( ph  <->  ta ) )   &    |-  ps   &    |-  ( k  e.  N  ->  ( ch  ->  th ) )   =>    |-  ( A  e.  N  ->  ta )
 
Theoremnntopi 7964* Mapping from  NN to  N.. (Contributed by Jim Kingdon, 13-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   =>    |-  ( A  e.  N  ->  E. z  e.  N.  <. [ <. ( <. { l  |  l  <Q  [ <. z ,  1o >. ]  ~Q  } ,  { u  |  [ <. z ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  A )
 
Theoremaxcaucvglemcl 7965* Lemma for axcaucvg 7970. Mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   =>    |-  (
 ( ph  /\  J  e.  N. )  ->  ( iota_ z  e. 
 R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e. 
 R. )
 
Theoremaxcaucvglemf 7966* Lemma for axcaucvg 7970. Mapping to  N. and  R. yields a sequence. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  G : N.
 --> R. )
 
Theoremaxcaucvglemval 7967* Lemma for axcaucvg 7970. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( F `  <. [ <. ( <. { l  |  l  <Q  [
 <. J ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
 
Theoremaxcaucvglemcau 7968* Lemma for axcaucvg 7970. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  A. n  e. 
 N.  A. k  e.  N.  ( n  <N  k  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremaxcaucvglemres 7969* Lemma for axcaucvg 7970. Mapping the limit from  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   &    |-  G  =  ( j  e.  N.  |->  (
 iota_ z  e.  R.  ( F `  <. [ <. (
 <. { l  |  l 
 <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Theoremaxcaucvg 7970* Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 
1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for  NN or division, we use  N for the natural numbers and express a reciprocal in terms of  iota_.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 8002. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

 |-  N  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }   &    |-  ( ph  ->  F : N --> RR )   &    |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e. 
 RR  ( 0  <RR  x 
 ->  E. j  e.  N  A. k  e.  N  ( j  <RR  k  ->  (
 ( F `  k
 )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k
 )  +  x ) ) ) ) )
 
Theoremaxpre-suploclemres 7971* Lemma for axpre-suploc 7972. The result. The proof just needs to define  B as basically the same set as  A (but expressed as a subset of  R. rather than a subset of  RR), and apply suplocsr 7879. (Contributed by Jim Kingdon, 24-Jan-2024.)
 |-  ( ph  ->  A  C_ 
 RR )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y 
 <RR  x )   &    |-  ( ph  ->  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y  ->  ( E. z  e.  A  x  <RR  z  \/  A. z  e.  A  z  <RR  y ) ) )   &    |-  B  =  { w  e.  R.  |  <. w ,  0R >.  e.  A }   =>    |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y  /\  A. y  e.  RR  (
 y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
Theoremaxpre-suploc 7972* An inhabited, bounded-above, located set of reals has a supremum.

Locatedness here means that given  x  <  y, either there is an element of the set greater than  x, or  y is an upper bound.

This construction-dependent theorem should not be referenced directly; instead, use ax-pre-suploc 8003. (Contributed by Jim Kingdon, 23-Jan-2024.) (New usage is discouraged.)

 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <RR  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  <RR  y 
 ->  ( E. z  e.  A  x  <RR  z  \/ 
 A. z  e.  A  z  <RR  y ) ) ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <RR  y 
 /\  A. y  e.  RR  ( y  <RR  x  ->  E. z  e.  A  y  <RR  z ) ) )
 
4.1.3  Real and complex number postulates restated as axioms
 
Axiomax-cnex 7973 The complex numbers form a set. Proofs should normally use cnex 8006 instead. (New usage is discouraged.) (Contributed by NM, 1-Mar-1995.)
 |- 
 CC  e.  _V
 
Axiomax-resscn 7974 The real numbers are a subset of the complex numbers. Axiom for real and complex numbers, justified by Theorem axresscn 7930. (Contributed by NM, 1-Mar-1995.)
 |- 
 RR  C_  CC
 
Axiomax-1cn 7975 1 is a complex number. Axiom for real and complex numbers, justified by Theorem ax1cn 7931. (Contributed by NM, 1-Mar-1995.)
 |-  1  e.  CC
 
Axiomax-1re 7976 1 is a real number. Axiom for real and complex numbers, justified by Theorem ax1re 7932. Proofs should use 1re 8028 instead. (Contributed by Jim Kingdon, 13-Jan-2020.) (New usage is discouraged.)
 |-  1  e.  RR
 
Axiomax-icn 7977  _i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7933. (Contributed by NM, 1-Mar-1995.)
 |-  _i  e.  CC
 
Axiomax-addcl 7978 Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7934. Proofs should normally use addcl 8007 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  e.  CC )
 
Axiomax-addrcl 7979 Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7935. Proofs should normally use readdcl 8008 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B )  e.  RR )
 
Axiomax-mulcl 7980 Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7936. Proofs should normally use mulcl 8009 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  e.  CC )
 
Axiomax-mulrcl 7981 Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7937. Proofs should normally use remulcl 8010 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B )  e.  RR )
 
Axiomax-addcom 7982 Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7940. Proofs should normally use addcom 8166 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B )  =  ( B  +  A )
 )
 
Axiomax-mulcom 7983 Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7941. Proofs should normally use mulcom 8011 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Axiomax-addass 7984 Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7942. Proofs should normally use addass 8012 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) ) )
 
Axiomax-mulass 7985 Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7943. Proofs should normally use mulass 8013 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Axiomax-distr 7986 Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, justified by Theorem axdistr 7944. Proofs should normally use adddi 8014 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C )
 )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Axiomax-i2m1 7987 i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom for real and complex numbers, justified by Theorem axi2m1 7945. (Contributed by NM, 29-Jan-1995.)
 |-  ( ( _i  x.  _i )  +  1
 )  =  0
 
Axiomax-0lt1 7988 0 is less than 1. Axiom for real and complex numbers, justified by Theorem ax0lt1 7946. Proofs should normally use 0lt1 8156 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  0  <RR  1
 
Axiomax-1rid 7989  1 is an identity element for real multiplication. Axiom for real and complex numbers, justified by Theorem ax1rid 7947. (Contributed by NM, 29-Jan-1995.)
 |-  ( A  e.  RR  ->  ( A  x.  1
 )  =  A )
 
Axiomax-0id 7990  0 is an identity element for real addition. Axiom for real and complex numbers, justified by Theorem ax0id 7948.

Proofs should normally use addrid 8167 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 16-Jan-2020.)

 |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
 
Axiomax-rnegex 7991* Existence of negative of real number. Axiom for real and complex numbers, justified by Theorem axrnegex 7949. (Contributed by Eric Schmidt, 21-May-2007.)
 |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
 
Axiomax-precex 7992* Existence of reciprocal of positive real number. Axiom for real and complex numbers, justified by Theorem axprecex 7950. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( ( A  e.  RR  /\  0  <RR  A ) 
 ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x )  =  1 )
 )
 
Axiomax-cnre 7993* A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of [Gleason] p. 130. Axiom for real and complex numbers, justified by Theorem axcnre 7951. For naming consistency, use cnre 8025 for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Axiomax-pre-ltirr 7994 Real number less-than is irreflexive. Axiom for real and complex numbers, justified by Theorem ax-pre-ltirr 7994. (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  ( A  e.  RR  ->  -.  A  <RR  A )
 
Axiomax-pre-ltwlin 7995 Real number less-than is weakly linear. Axiom for real and complex numbers, justified by Theorem axpre-ltwlin 7953. (Contributed by Jim Kingdon, 12-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( A  <RR  C  \/  C  <RR  B ) ) )
 
Axiomax-pre-lttrn 7996 Ordering on reals is transitive. Axiom for real and complex numbers, justified by Theorem axpre-lttrn 7954. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <RR  B 
 /\  B  <RR  C ) 
 ->  A  <RR  C ) )
 
Axiomax-pre-apti 7997 Apartness of reals is tight. Axiom for real and complex numbers, justified by Theorem axpre-apti 7955. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <RR  B  \/  B  <RR  A ) )  ->  A  =  B )
 
Axiomax-pre-ltadd 7998 Ordering property of addition on reals. Axiom for real and complex numbers, justified by Theorem axpre-ltadd 7956. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <RR  B  ->  ( C  +  A ) 
 <RR  ( C  +  B ) ) )
 
Axiomax-pre-mulgt0 7999 The product of two positive reals is positive. Axiom for real and complex numbers, justified by Theorem axpre-mulgt0 7957. (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0 
 <RR  A  /\  0  <RR  B )  ->  0  <RR  ( A  x.  B ) ) )
 
Axiomax-pre-mulext 8000 Strong extensionality of multiplication (expressed in terms of  <RR). Axiom for real and complex numbers, justified by Theorem axpre-mulext 7958

(Contributed by Jim Kingdon, 18-Feb-2020.)

 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  x.  C )  <RR  ( B  x.  C )  ->  ( A  <RR  B  \/  B  <RR  A ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15757
  Copyright terms: Public domain < Previous  Next >