HomeHome Intuitionistic Logic Explorer
Theorem List (p. 80 of 141)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7901-8000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreex 7901 The real numbers form a set. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |- 
 RR  e.  _V
 
Theoremreelprrecn 7902 Reals are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- 
 RR  e.  { RR ,  CC }
 
Theoremcnelprrecn 7903 Complex numbers are a subset of the pair of real and complex numbers (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- 
 CC  e.  { RR ,  CC }
 
Theoremadddir 7904 Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
 
Theorem0cn 7905 0 is a complex number. (Contributed by NM, 19-Feb-2005.)
 |-  0  e.  CC
 
Theorem0cnd 7906 0 is a complex number, deductive form. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( ph  ->  0  e.  CC )
 
Theoremc0ex 7907 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  0  e.  _V
 
Theorem1ex 7908 1 is a set. Common special case. (Contributed by David A. Wheeler, 7-Jul-2016.)
 |-  1  e.  _V
 
Theoremcnre 7909* Alias for ax-cnre 7878, for naming consistency. (Contributed by NM, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremmulid1 7910  1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
 |-  ( A  e.  CC  ->  ( A  x.  1
 )  =  A )
 
Theoremmulid2 7911 Identity law for multiplication. Note: see mulid1 7910 for commuted version. (Contributed by NM, 8-Oct-1999.)
 |-  ( A  e.  CC  ->  ( 1  x.  A )  =  A )
 
Theorem1re 7912  1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.)
 |-  1  e.  RR
 
Theorem0re 7913  0 is a real number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.)
 |-  0  e.  RR
 
Theorem0red 7914  0 is a real number, deductive form. (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  0  e.  RR )
 
Theoremmulid1i 7915 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
 |-  A  e.  CC   =>    |-  ( A  x.  1 )  =  A
 
Theoremmulid2i 7916 Identity law for multiplication. (Contributed by NM, 14-Feb-1995.)
 |-  A  e.  CC   =>    |-  ( 1  x.  A )  =  A
 
Theoremaddcli 7917 Closure law for addition. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  +  B )  e.  CC
 
Theoremmulcli 7918 Closure law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  x.  B )  e.  CC
 
Theoremmulcomi 7919 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( A  x.  B )  =  ( B  x.  A )
 
Theoremmulcomli 7920 Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  ( A  x.  B )  =  C   =>    |-  ( B  x.  A )  =  C
 
Theoremaddassi 7921 Associative law for addition. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  +  C )  =  ( A  +  ( B  +  C )
 )
 
Theoremmulassi 7922 Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) )
 
Theoremadddii 7923 Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) )
 
Theoremadddiri 7924 Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
 |-  A  e.  CC   &    |-  B  e.  CC   &    |-  C  e.  CC   =>    |-  (
 ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) )
 
Theoremrecni 7925 A real number is a complex number. (Contributed by NM, 1-Mar-1995.)
 |-  A  e.  RR   =>    |-  A  e.  CC
 
Theoremreaddcli 7926 Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  +  B )  e.  RR
 
Theoremremulcli 7927 Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( A  x.  B )  e.  RR
 
Theorem1red 7928 1 is an real number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  1  e.  RR )
 
Theorem1cnd 7929 1 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  1  e.  CC )
 
Theoremmulid1d 7930 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  1 )  =  A )
 
Theoremmulid2d 7931 Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 1  x.  A )  =  A )
 
Theoremaddcld 7932 Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  +  B )  e.  CC )
 
Theoremmulcld 7933 Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  x.  B )  e.  CC )
 
Theoremmulcomd 7934 Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  x.  B )  =  ( B  x.  A ) )
 
Theoremaddassd 7935 Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  +  C )  =  ( A  +  ( B  +  C )
 ) )
 
Theoremmulassd 7936 Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C ) ) )
 
Theoremadddid 7937 Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
 
Theoremadddird 7938 Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  (
 ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) ) )
 
Theoremadddirp1d 7939 Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( A  +  1 )  x.  B )  =  ( ( A  x.  B )  +  B ) )
 
Theoremjoinlmuladdmuld 7940 Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  (
 ( A  x.  B )  +  ( C  x.  B ) )  =  D )   =>    |-  ( ph  ->  (
 ( A  +  C )  x.  B )  =  D )
 
Theoremrecnd 7941 Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremreaddcld 7942 Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  +  B )  e.  RR )
 
Theoremremulcld 7943 Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  x.  B )  e.  RR )
 
4.2.2  Infinity and the extended real number system
 
Syntaxcpnf 7944 Plus infinity.
 class +oo
 
Syntaxcmnf 7945 Minus infinity.
 class -oo
 
Syntaxcxr 7946 The set of extended reals (includes plus and minus infinity).
 class  RR*
 
Syntaxclt 7947 'Less than' predicate (extended to include the extended reals).
 class  <
 
Syntaxcle 7948 Extend wff notation to include the 'less than or equal to' relation.
 class  <_
 
Definitiondf-pnf 7949 Define plus infinity. Note that the definition is arbitrary, requiring only that +oo be a set not in  RR and different from -oo (df-mnf 7950). We use  ~P
U. CC to make it independent of the construction of  CC, and Cantor's Theorem will show that it is different from any member of 
CC and therefore  RR. See pnfnre 7954 and mnfnre 7955, and we'll also be able to prove +oo  =/= -oo.

A simpler possibility is to define +oo as  CC and -oo as  { CC }, but that approach requires the Axiom of Regularity to show that +oo and -oo are different from each other and from all members of  RR. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

 |- +oo  =  ~P U. CC
 
Definitiondf-mnf 7950 Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -oo be a set not in  RR and different from +oo (see mnfnre 7955). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)
 |- -oo  =  ~P +oo
 
Definitiondf-xr 7951 Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.)
 |-  RR*  =  ( RR  u.  { +oo , -oo } )
 
Definitiondf-ltxr 7952* Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers,  <RR is primitive and not necessarily a relation on  RR. (Contributed by NM, 13-Oct-2005.)
 |- 
 <  =  ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  ( ( ( RR 
 u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) )
 
Definitiondf-le 7953 Define 'less than or equal to' on the extended real subset of complex numbers. (Contributed by NM, 13-Oct-2005.)
 |- 
 <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
 
Theorempnfnre 7954 Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
 |- +oo  e/  RR
 
Theoremmnfnre 7955 Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
 |- -oo  e/  RR
 
Theoremressxr 7956 The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
 |- 
 RR  C_  RR*
 
Theoremrexpssxrxp 7957 The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
 
Theoremrexr 7958 A standard real is an extended real. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  ->  A  e.  RR* )
 
Theorem0xr 7959 Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.)
 |-  0  e.  RR*
 
Theoremrenepnf 7960 No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( A  e.  RR  ->  A  =/= +oo )
 
Theoremrenemnf 7961 No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( A  e.  RR  ->  A  =/= -oo )
 
Theoremrexrd 7962 A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  e.  RR* )
 
Theoremrenepnfd 7963 No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  =/= +oo )
 
Theoremrenemnfd 7964 No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  =/= -oo )
 
Theorempnfxr 7965 Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.)
 |- +oo  e.  RR*
 
Theorempnfex 7966 Plus infinity exists (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- +oo  e.  _V
 
Theorempnfnemnf 7967 Plus and minus infinity are different elements of  RR*. (Contributed by NM, 14-Oct-2005.)
 |- +oo  =/= -oo
 
Theoremmnfnepnf 7968 Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- -oo  =/= +oo
 
Theoremmnfxr 7969 Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |- -oo  e.  RR*
 
Theoremrexri 7970 A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.)
 |-  A  e.  RR   =>    |-  A  e.  RR*
 
Theorem1xr 7971  1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  1  e.  RR*
 
Theoremrenfdisj 7972 The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
 |-  ( RR  i^i  { +oo , -oo } )  =  (/)
 
Theoremltrelxr 7973 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
 |- 
 <  C_  ( RR*  X.  RR* )
 
Theoremltrel 7974 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
 |- 
 Rel  <
 
Theoremlerelxr 7975 'Less than or equal' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
 |- 
 <_  C_  ( RR*  X.  RR* )
 
Theoremlerel 7976 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |- 
 Rel  <_
 
Theoremxrlenlt 7977 'Less than or equal to' expressed in terms of 'less than', for extended reals. (Contributed by NM, 14-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
 
Theoremltxrlt 7978 The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A  <RR  B ) )
 
4.2.3  Restate the ordering postulates with extended real "less than"
 
Theoremaxltirr 7979 Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltirr 7879 with ordering on the extended reals. New proofs should use ltnr 7989 instead for naming consistency. (New usage is discouraged.) (Contributed by Jim Kingdon, 15-Jan-2020.)
 |-  ( A  e.  RR  ->  -.  A  <  A )
 
Theoremaxltwlin 7980 Real number less-than is weakly linear. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-ltwlin 7880 with ordering on the extended reals. (Contributed by Jim Kingdon, 15-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( A  <  C  \/  C  <  B ) ) )
 
Theoremaxlttrn 7981 Ordering on reals is transitive. Axiom for real and complex numbers, derived from set theory. This restates ax-pre-lttrn 7881 with ordering on the extended reals. New proofs should use lttr 7986 instead for naming consistency. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <  B 
 /\  B  <  C )  ->  A  <  C ) )
 
Theoremaxltadd 7982 Ordering property of addition on reals. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-ltadd 7883 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  +  A )  <  ( C  +  B ) ) )
 
Theoremaxapti 7983 Apartness of reals is tight. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-apti 7882 with ordering on the extended reals.) (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\ 
 -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
 
Theoremaxmulgt0 7984 The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7884 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <  A  /\  0  <  B )  ->  0  <  ( A  x.  B ) ) )
 
Theoremaxsuploc 7985* An inhabited, bounded-above, located set of reals has a supremum. Axiom for real and complex numbers, derived from ZF set theory. (This restates ax-pre-suploc 7888 with ordering on the extended reals.) (Contributed by Jim Kingdon, 30-Jan-2024.)
 |-  ( ( ( A 
 C_  RR  /\  E. x  x  e.  A )  /\  ( E. x  e. 
 RR  A. y  e.  A  y  <  x  /\  A. x  e.  RR  A. y  e.  RR  ( x  < 
 y  ->  ( E. z  e.  A  x  <  z  \/  A. z  e.  A  z  <  y
 ) ) ) ) 
 ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
 y  <  x  ->  E. z  e.  A  y  <  z ) ) )
 
4.2.4  Ordering on reals
 
Theoremlttr 7986 Alias for axlttrn 7981, for naming consistency with lttri 8017. New proofs should generally use this instead of ax-pre-lttrn 7881. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <  B 
 /\  B  <  C )  ->  A  <  C ) )
 
Theoremmulgt0 7987 The product of two positive numbers is positive. (Contributed by NM, 10-Mar-2008.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
 0  <  ( A  x.  B ) )
 
Theoremlenlt 7988 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
 
Theoremltnr 7989 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
 |-  ( A  e.  RR  ->  -.  A  <  A )
 
Theoremltso 7990 'Less than' is a strict ordering. (Contributed by NM, 19-Jan-1997.)
 |- 
 <  Or  RR
 
Theoremgtso 7991 'Greater than' is a strict ordering. (Contributed by JJ, 11-Oct-2018.)
 |-  `'  <  Or  RR
 
Theoremlttri3 7992 Tightness of real apartness. (Contributed by NM, 5-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  ( -.  A  <  B 
 /\  -.  B  <  A ) ) )
 
Theoremletri3 7993 Tightness of real apartness. (Contributed by NM, 14-May-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  ( A  <_  B  /\  B  <_  A )
 ) )
 
Theoremltleletr 7994 Transitive law, weaker form of  ( A  <  B  /\  B  <_  C )  ->  A  <  C. (Contributed by AV, 14-Oct-2018.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <  B 
 /\  B  <_  C )  ->  A  <_  C ) )
 
Theoremletr 7995 Transitive law. (Contributed by NM, 12-Nov-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  <_  B 
 /\  B  <_  C )  ->  A  <_  C ) )
 
Theoremleid 7996 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.)
 |-  ( A  e.  RR  ->  A  <_  A )
 
Theoremltne 7997 'Less than' implies not equal. See also ltap 8545 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
 |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
 
Theoremltnsym 7998 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B 
 ->  -.  B  <  A ) )
 
Theoremeqlelt 7999 Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B 
 <->  ( A  <_  B  /\  -.  A  <  B ) ) )
 
Theoremltle 8000 'Less than' implies 'less than or equal to'. (Contributed by NM, 25-Aug-1999.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B 
 ->  A  <_  B )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14078
  Copyright terms: Public domain < Previous  Next >