ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 8026
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7984. Proofs should normally use addass 8054 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7922 . . . 4  class  CC
31, 2wcel 2175 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2175 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2175 . . 3  wff  C  e.  CC
83, 5, 7w3a 980 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7927 . . . . 5  class  +
101, 4, 9co 5943 . . . 4  class  ( A  +  B )
1110, 6, 9co 5943 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5943 . . . 4  class  ( B  +  C )
131, 12, 9co 5943 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1372 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  8054
  Copyright terms: Public domain W3C validator