ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 8057
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8015. Proofs should normally use addass 8085 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7953 . . . 4  class  CC
31, 2wcel 2177 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2177 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2177 . . 3  wff  C  e.  CC
83, 5, 7w3a 981 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7958 . . . . 5  class  +
101, 4, 9co 5962 . . . 4  class  ( A  +  B )
1110, 6, 9co 5962 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5962 . . . 4  class  ( B  +  C )
131, 12, 9co 5962 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1373 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  8085
  Copyright terms: Public domain W3C validator