ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 7915
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7873. Proofs should normally use addass 7943 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7811 . . . 4  class  CC
31, 2wcel 2148 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2148 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2148 . . 3  wff  C  e.  CC
83, 5, 7w3a 978 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7816 . . . . 5  class  +
101, 4, 9co 5877 . . . 4  class  ( A  +  B )
1110, 6, 9co 5877 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5877 . . . 4  class  ( B  +  C )
131, 12, 9co 5877 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1353 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  7943
  Copyright terms: Public domain W3C validator