ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 7974
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7932. Proofs should normally use addass 8002 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7870 . . . 4  class  CC
31, 2wcel 2164 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2164 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2164 . . 3  wff  C  e.  CC
83, 5, 7w3a 980 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7875 . . . . 5  class  +
101, 4, 9co 5918 . . . 4  class  ( A  +  B )
1110, 6, 9co 5918 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5918 . . . 4  class  ( B  +  C )
131, 12, 9co 5918 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1364 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  8002
  Copyright terms: Public domain W3C validator