ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 7876
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7834. Proofs should normally use addass 7904 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7772 . . . 4  class  CC
31, 2wcel 2141 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2141 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2141 . . 3  wff  C  e.  CC
83, 5, 7w3a 973 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7777 . . . . 5  class  +
101, 4, 9co 5853 . . . 4  class  ( A  +  B )
1110, 6, 9co 5853 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5853 . . . 4  class  ( B  +  C )
131, 12, 9co 5853 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1348 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  7904
  Copyright terms: Public domain W3C validator