ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 7851
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7809. Proofs should normally use addass 7879 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7747 . . . 4  class  CC
31, 2wcel 2136 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2136 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2136 . . 3  wff  C  e.  CC
83, 5, 7w3a 968 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7752 . . . . 5  class  +
101, 4, 9co 5841 . . . 4  class  ( A  +  B )
1110, 6, 9co 5841 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5841 . . . 4  class  ( B  +  C )
131, 12, 9co 5841 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1343 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  7879
  Copyright terms: Public domain W3C validator