ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 8027
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7985. Proofs should normally use addass 8055 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7923 . . . 4  class  CC
31, 2wcel 2176 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2176 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2176 . . 3  wff  C  e.  CC
83, 5, 7w3a 981 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7928 . . . . 5  class  +
101, 4, 9co 5944 . . . 4  class  ( A  +  B )
1110, 6, 9co 5944 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 5944 . . . 4  class  ( B  +  C )
131, 12, 9co 5944 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1373 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  8055
  Copyright terms: Public domain W3C validator