ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass Unicode version

Axiom ax-addass 8097
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8055. Proofs should normally use addass 8125 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7993 . . . 4  class  CC
31, 2wcel 2200 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2200 . . 3  wff  B  e.  CC
6 cC . . . 4  class  C
76, 2wcel 2200 . . 3  wff  C  e.  CC
83, 5, 7w3a 1002 . 2  wff  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )
9 caddc 7998 . . . . 5  class  +
101, 4, 9co 6000 . . . 4  class  ( A  +  B )
1110, 6, 9co 6000 . . 3  class  ( ( A  +  B )  +  C )
124, 6, 9co 6000 . . . 4  class  ( B  +  C )
131, 12, 9co 6000 . . 3  class  ( A  +  ( B  +  C ) )
1411, 13wceq 1395 . 2  wff  ( ( A  +  B )  +  C )  =  ( A  +  ( B  +  C ) )
158, 14wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  C )  =  ( A  +  ( B  +  C
) ) )
Colors of variables: wff set class
This axiom is referenced by:  addass  8125
  Copyright terms: Public domain W3C validator