Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-mulass | GIF version |
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7793. Proofs should normally use mulass 7863 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7730 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2128 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2128 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2128 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 963 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | cmul 7737 | . . . . 5 class · | |
10 | 1, 4, 9 | co 5824 | . . . 4 class (𝐴 · 𝐵) |
11 | 10, 6, 9 | co 5824 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
12 | 4, 6, 9 | co 5824 | . . . 4 class (𝐵 · 𝐶) |
13 | 1, 12, 9 | co 5824 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
14 | 11, 13 | wceq 1335 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: mulass 7863 |
Copyright terms: Public domain | W3C validator |