ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass GIF version

Axiom ax-mulass 7835
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7793. Proofs should normally use mulass 7863 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7730 . . . 4 class
31, 2wcel 2128 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2128 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2128 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 963 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 cmul 7737 . . . . 5 class ·
101, 4, 9co 5824 . . . 4 class (𝐴 · 𝐵)
1110, 6, 9co 5824 . . 3 class ((𝐴 · 𝐵) · 𝐶)
124, 6, 9co 5824 . . . 4 class (𝐵 · 𝐶)
131, 12, 9co 5824 . . 3 class (𝐴 · (𝐵 · 𝐶))
1411, 13wceq 1335 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  mulass  7863
  Copyright terms: Public domain W3C validator