| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulass | GIF version | ||
| Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8048. Proofs should normally use mulass 8118 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7985 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2200 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2200 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2200 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1002 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | cmul 7992 | . . . . 5 class · | |
| 10 | 1, 4, 9 | co 5994 | . . . 4 class (𝐴 · 𝐵) |
| 11 | 10, 6, 9 | co 5994 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
| 12 | 4, 6, 9 | co 5994 | . . . 4 class (𝐵 · 𝐶) |
| 13 | 1, 12, 9 | co 5994 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
| 14 | 11, 13 | wceq 1395 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulass 8118 |
| Copyright terms: Public domain | W3C validator |