ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass GIF version

Axiom ax-mulass 8090
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8048. Proofs should normally use mulass 8118 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7985 . . . 4 class
31, 2wcel 2200 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2200 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2200 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 1002 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 cmul 7992 . . . . 5 class ·
101, 4, 9co 5994 . . . 4 class (𝐴 · 𝐵)
1110, 6, 9co 5994 . . 3 class ((𝐴 · 𝐵) · 𝐶)
124, 6, 9co 5994 . . . 4 class (𝐵 · 𝐶)
131, 12, 9co 5994 . . 3 class (𝐴 · (𝐵 · 𝐶))
1411, 13wceq 1395 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  mulass  8118
  Copyright terms: Public domain W3C validator