| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulass | GIF version | ||
| Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7999. Proofs should normally use mulass 8069 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7936 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2177 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2177 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2177 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 981 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | cmul 7943 | . . . . 5 class · | |
| 10 | 1, 4, 9 | co 5954 | . . . 4 class (𝐴 · 𝐵) |
| 11 | 10, 6, 9 | co 5954 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
| 12 | 4, 6, 9 | co 5954 | . . . 4 class (𝐵 · 𝐶) |
| 13 | 1, 12, 9 | co 5954 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
| 14 | 11, 13 | wceq 1373 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulass 8069 |
| Copyright terms: Public domain | W3C validator |