ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass GIF version

Axiom ax-mulass 8041
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7999. Proofs should normally use mulass 8069 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7936 . . . 4 class
31, 2wcel 2177 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2177 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2177 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 981 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 cmul 7943 . . . . 5 class ·
101, 4, 9co 5954 . . . 4 class (𝐴 · 𝐵)
1110, 6, 9co 5954 . . 3 class ((𝐴 · 𝐵) · 𝐶)
124, 6, 9co 5954 . . . 4 class (𝐵 · 𝐶)
131, 12, 9co 5954 . . 3 class (𝐴 · (𝐵 · 𝐶))
1411, 13wceq 1373 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  mulass  8069
  Copyright terms: Public domain W3C validator