| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulass | GIF version | ||
| Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 8068. Proofs should normally use mulass 8138 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 8005 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2200 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2200 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2200 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1002 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | cmul 8012 | . . . . 5 class · | |
| 10 | 1, 4, 9 | co 6007 | . . . 4 class (𝐴 · 𝐵) |
| 11 | 10, 6, 9 | co 6007 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
| 12 | 4, 6, 9 | co 6007 | . . . 4 class (𝐵 · 𝐶) |
| 13 | 1, 12, 9 | co 6007 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
| 14 | 11, 13 | wceq 1395 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulass 8138 |
| Copyright terms: Public domain | W3C validator |