ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass GIF version

Axiom ax-mulass 7877
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7835. Proofs should normally use mulass 7905 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7772 . . . 4 class
31, 2wcel 2141 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2141 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2141 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 973 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 cmul 7779 . . . . 5 class ·
101, 4, 9co 5853 . . . 4 class (𝐴 · 𝐵)
1110, 6, 9co 5853 . . 3 class ((𝐴 · 𝐵) · 𝐶)
124, 6, 9co 5853 . . . 4 class (𝐵 · 𝐶)
131, 12, 9co 5853 . . 3 class (𝐴 · (𝐵 · 𝐶))
1411, 13wceq 1348 . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  mulass  7905
  Copyright terms: Public domain W3C validator