Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-mulass | GIF version |
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axmulass 7835. Proofs should normally use mulass 7905 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7772 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2141 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2141 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2141 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 973 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | cmul 7779 | . . . . 5 class · | |
10 | 1, 4, 9 | co 5853 | . . . 4 class (𝐴 · 𝐵) |
11 | 10, 6, 9 | co 5853 | . . 3 class ((𝐴 · 𝐵) · 𝐶) |
12 | 4, 6, 9 | co 5853 | . . . 4 class (𝐵 · 𝐶) |
13 | 1, 12, 9 | co 5853 | . . 3 class (𝐴 · (𝐵 · 𝐶)) |
14 | 11, 13 | wceq 1348 | . 2 wff ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: mulass 7905 |
Copyright terms: Public domain | W3C validator |