ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom Unicode version

Axiom ax-mulcom 8025
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7983. Proofs should normally use mulcom 8053 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7922 . . . 4  class  CC
31, 2wcel 2175 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2175 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7929 . . . 4  class  x.
81, 4, 7co 5943 . . 3  class  ( A  x.  B )
94, 1, 7co 5943 . . 3  class  ( B  x.  A )
108, 9wceq 1372 . 2  wff  ( A  x.  B )  =  ( B  x.  A
)
116, 10wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8053
  Copyright terms: Public domain W3C validator