ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom Unicode version

Axiom ax-mulcom 8046
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8004. Proofs should normally use mulcom 8074 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7943 . . . 4  class  CC
31, 2wcel 2177 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2177 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7950 . . . 4  class  x.
81, 4, 7co 5957 . . 3  class  ( A  x.  B )
94, 1, 7co 5957 . . 3  class  ( B  x.  A )
108, 9wceq 1373 . 2  wff  ( A  x.  B )  =  ( B  x.  A
)
116, 10wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8074
  Copyright terms: Public domain W3C validator