ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom Unicode version

Axiom ax-mulcom 7997
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7955. Proofs should normally use mulcom 8025 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7894 . . . 4  class  CC
31, 2wcel 2167 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2167 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7901 . . . 4  class  x.
81, 4, 7co 5925 . . 3  class  ( A  x.  B )
94, 1, 7co 5925 . . 3  class  ( B  x.  A )
108, 9wceq 1364 . 2  wff  ( A  x.  B )  =  ( B  x.  A
)
116, 10wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8025
  Copyright terms: Public domain W3C validator