ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom Unicode version

Axiom ax-mulcom 7854
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7812. Proofs should normally use mulcom 7882 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7751 . . . 4  class  CC
31, 2wcel 2136 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2136 . . 3  wff  B  e.  CC
63, 5wa 103 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7758 . . . 4  class  x.
81, 4, 7co 5842 . . 3  class  ( A  x.  B )
94, 1, 7co 5842 . . 3  class  ( B  x.  A )
108, 9wceq 1343 . 2  wff  ( A  x.  B )  =  ( B  x.  A
)
116, 10wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
This axiom is referenced by:  mulcom  7882
  Copyright terms: Public domain W3C validator