ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom Unicode version

Axiom ax-mulcom 7875
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7833. Proofs should normally use mulcom 7903 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7772 . . . 4  class  CC
31, 2wcel 2141 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2141 . . 3  wff  B  e.  CC
63, 5wa 103 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 7779 . . . 4  class  x.
81, 4, 7co 5853 . . 3  class  ( A  x.  B )
94, 1, 7co 5853 . . 3  class  ( B  x.  A )
108, 9wceq 1348 . 2  wff  ( A  x.  B )  =  ( B  x.  A
)
116, 10wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
This axiom is referenced by:  mulcom  7903
  Copyright terms: Public domain W3C validator