ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom Unicode version

Axiom ax-mulcom 8096
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8054. Proofs should normally use mulcom 8124 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7993 . . . 4  class  CC
31, 2wcel 2200 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2200 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 cmul 8000 . . . 4  class  x.
81, 4, 7co 6000 . . 3  class  ( A  x.  B )
94, 1, 7co 6000 . . 3  class  ( B  x.  A )
108, 9wceq 1395 . 2  wff  ( A  x.  B )  =  ( B  x.  A
)
116, 10wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8124
  Copyright terms: Public domain W3C validator