Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulcom | Unicode version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7816 be used later. Instead, use mulcom 7844. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axmulcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7744 | . 2 | |
2 | mulcnsrec 7746 | . 2 | |
3 | mulcnsrec 7746 | . 2 | |
4 | simpll 519 | . . . 4 | |
5 | simprl 521 | . . . 4 | |
6 | mulcomsrg 7660 | . . . 4 | |
7 | 4, 5, 6 | syl2anc 409 | . . 3 |
8 | simplr 520 | . . . . 5 | |
9 | simprr 522 | . . . . 5 | |
10 | mulcomsrg 7660 | . . . . 5 | |
11 | 8, 9, 10 | syl2anc 409 | . . . 4 |
12 | 11 | oveq2d 5834 | . . 3 |
13 | 7, 12 | oveq12d 5836 | . 2 |
14 | mulcomsrg 7660 | . . . . 5 | |
15 | 8, 5, 14 | syl2anc 409 | . . . 4 |
16 | mulcomsrg 7660 | . . . . 5 | |
17 | 4, 9, 16 | syl2anc 409 | . . . 4 |
18 | 15, 17 | oveq12d 5836 | . . 3 |
19 | mulclsr 7657 | . . . . 5 | |
20 | 5, 8, 19 | syl2anc 409 | . . . 4 |
21 | mulclsr 7657 | . . . . 5 | |
22 | 9, 4, 21 | syl2anc 409 | . . . 4 |
23 | addcomsrg 7658 | . . . 4 | |
24 | 20, 22, 23 | syl2anc 409 | . . 3 |
25 | 18, 24 | eqtrd 2190 | . 2 |
26 | 1, 2, 3, 13, 25 | ecovicom 6581 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cep 4246 ccnv 4582 (class class class)co 5818 cnr 7200 cm1r 7203 cplr 7204 cmr 7205 cc 7713 cmul 7720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-i1p 7370 df-iplp 7371 df-imp 7372 df-enr 7629 df-nr 7630 df-plr 7631 df-mr 7632 df-m1r 7636 df-c 7721 df-mul 7727 |
This theorem is referenced by: rereceu 7792 recriota 7793 |
Copyright terms: Public domain | W3C validator |