ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulcom Unicode version

Theorem axmulcom 7606
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 7646 be used later. Instead, use mulcom 7673. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulcom  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )

Proof of Theorem axmulcom
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7576 . 2  |-  CC  =  ( ( R.  X.  R. ) /. `'  _E  )
2 mulcnsrec 7578 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( [ <. x ,  y >. ] `'  _E  x.  [ <. z ,  w >. ] `'  _E  )  =  [ <. ( ( x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) ) ,  ( ( y  .R  z
)  +R  ( x  .R  w ) )
>. ] `'  _E  )
3 mulcnsrec 7578 . 2  |-  ( ( ( z  e.  R.  /\  w  e.  R. )  /\  ( x  e.  R.  /\  y  e.  R. )
)  ->  ( [ <. z ,  w >. ] `'  _E  x.  [ <. x ,  y >. ] `'  _E  )  =  [ <. ( ( z  .R  x )  +R  ( -1R  .R  ( w  .R  y ) ) ) ,  ( ( w  .R  x )  +R  ( z  .R  y
) ) >. ] `'  _E  )
4 simpll 501 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  x  e.  R. )
5 simprl 503 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  z  e.  R. )
6 mulcomsrg 7500 . . . 4  |-  ( ( x  e.  R.  /\  z  e.  R. )  ->  ( x  .R  z
)  =  ( z  .R  x ) )
74, 5, 6syl2anc 406 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  .R  z )  =  ( z  .R  x ) )
8 simplr 502 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  y  e.  R. )
9 simprr 504 . . . . 5  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  w  e.  R. )
10 mulcomsrg 7500 . . . . 5  |-  ( ( y  e.  R.  /\  w  e.  R. )  ->  ( y  .R  w
)  =  ( w  .R  y ) )
118, 9, 10syl2anc 406 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  .R  w )  =  ( w  .R  y ) )
1211oveq2d 5744 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( -1R  .R  ( y  .R  w
) )  =  ( -1R  .R  ( w  .R  y ) ) )
137, 12oveq12d 5746 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
x  .R  z )  +R  ( -1R  .R  (
y  .R  w )
) )  =  ( ( z  .R  x
)  +R  ( -1R 
.R  ( w  .R  y ) ) ) )
14 mulcomsrg 7500 . . . . 5  |-  ( ( y  e.  R.  /\  z  e.  R. )  ->  ( y  .R  z
)  =  ( z  .R  y ) )
158, 5, 14syl2anc 406 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( y  .R  z )  =  ( z  .R  y ) )
16 mulcomsrg 7500 . . . . 5  |-  ( ( x  e.  R.  /\  w  e.  R. )  ->  ( x  .R  w
)  =  ( w  .R  x ) )
174, 9, 16syl2anc 406 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( x  .R  w )  =  ( w  .R  x ) )
1815, 17oveq12d 5746 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  =  ( ( z  .R  y
)  +R  ( w  .R  x ) ) )
19 mulclsr 7497 . . . . 5  |-  ( ( z  e.  R.  /\  y  e.  R. )  ->  ( z  .R  y
)  e.  R. )
205, 8, 19syl2anc 406 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( z  .R  y )  e.  R. )
21 mulclsr 7497 . . . . 5  |-  ( ( w  e.  R.  /\  x  e.  R. )  ->  ( w  .R  x
)  e.  R. )
229, 4, 21syl2anc 406 . . . 4  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( w  .R  x )  e.  R. )
23 addcomsrg 7498 . . . 4  |-  ( ( ( z  .R  y
)  e.  R.  /\  ( w  .R  x
)  e.  R. )  ->  ( ( z  .R  y )  +R  (
w  .R  x )
)  =  ( ( w  .R  x )  +R  ( z  .R  y ) ) )
2420, 22, 23syl2anc 406 . . 3  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
z  .R  y )  +R  ( w  .R  x
) )  =  ( ( w  .R  x
)  +R  ( z  .R  y ) ) )
2518, 24eqtrd 2147 . 2  |-  ( ( ( x  e.  R.  /\  y  e.  R. )  /\  ( z  e.  R.  /\  w  e.  R. )
)  ->  ( (
y  .R  z )  +R  ( x  .R  w
) )  =  ( ( w  .R  x
)  +R  ( z  .R  y ) ) )
261, 2, 3, 13, 25ecovicom 6491 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463    _E cep 4169   `'ccnv 4498  (class class class)co 5728   R.cnr 7053   -1Rcm1r 7056    +R cplr 7057    .R cmr 7058   CCcc 7545    x. cmul 7552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-2o 6268  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-plpq 7100  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-plqqs 7105  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109  df-enq0 7180  df-nq0 7181  df-0nq0 7182  df-plq0 7183  df-mq0 7184  df-inp 7222  df-i1p 7223  df-iplp 7224  df-imp 7225  df-enr 7469  df-nr 7470  df-plr 7471  df-mr 7472  df-m1r 7476  df-c 7553  df-mul 7559
This theorem is referenced by:  rereceu  7624  recriota  7625
  Copyright terms: Public domain W3C validator