| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7938. Proofs should normally use mulcom 8008 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7877 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2167 | . . 3 wff 𝐴 ∈ ℂ | 
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2167 | . . 3 wff 𝐵 ∈ ℂ | 
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) | 
| 7 | cmul 7884 | . . . 4 class · | |
| 8 | 1, 4, 7 | co 5922 | . . 3 class (𝐴 · 𝐵) | 
| 9 | 4, 1, 7 | co 5922 | . . 3 class (𝐵 · 𝐴) | 
| 10 | 8, 9 | wceq 1364 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) | 
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: mulcom 8008 | 
| Copyright terms: Public domain | W3C validator |