ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom GIF version

Axiom ax-mulcom 7850
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7808. Proofs should normally use mulcom 7878 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7747 . . . 4 class
31, 2wcel 2136 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2136 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 103 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 7754 . . . 4 class ·
81, 4, 7co 5841 . . 3 class (𝐴 · 𝐵)
94, 1, 7co 5841 . . 3 class (𝐵 · 𝐴)
108, 9wceq 1343 . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
This axiom is referenced by:  mulcom  7878
  Copyright terms: Public domain W3C validator