ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom GIF version

Axiom ax-mulcom 8033
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7991. Proofs should normally use mulcom 8061 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7930 . . . 4 class
31, 2wcel 2177 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2177 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 7937 . . . 4 class ·
81, 4, 7co 5951 . . 3 class (𝐴 · 𝐵)
94, 1, 7co 5951 . . 3 class (𝐵 · 𝐴)
108, 9wceq 1373 . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8061
  Copyright terms: Public domain W3C validator