![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7888. Proofs should normally use mulcom 7958 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7827 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2160 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2160 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | cmul 7834 | . . . 4 class · | |
8 | 1, 4, 7 | co 5891 | . . 3 class (𝐴 · 𝐵) |
9 | 4, 1, 7 | co 5891 | . . 3 class (𝐵 · 𝐴) |
10 | 8, 9 | wceq 1364 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
This axiom is referenced by: mulcom 7958 |
Copyright terms: Public domain | W3C validator |