ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom GIF version

Axiom ax-mulcom 8108
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8066. Proofs should normally use mulcom 8136 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 8005 . . . 4 class
31, 2wcel 2200 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2200 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 8012 . . . 4 class ·
81, 4, 7co 6007 . . 3 class (𝐴 · 𝐵)
94, 1, 7co 6007 . . 3 class (𝐵 · 𝐴)
108, 9wceq 1395 . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8136
  Copyright terms: Public domain W3C validator