Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7808. Proofs should normally use mulcom 7878 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7747 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2136 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2136 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | cmul 7754 | . . . 4 class · | |
8 | 1, 4, 7 | co 5841 | . . 3 class (𝐴 · 𝐵) |
9 | 4, 1, 7 | co 5841 | . . 3 class (𝐵 · 𝐴) |
10 | 8, 9 | wceq 1343 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
This axiom is referenced by: mulcom 7878 |
Copyright terms: Public domain | W3C validator |