| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7991. Proofs should normally use mulcom 8061 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7930 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2177 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2177 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
| 7 | cmul 7937 | . . . 4 class · | |
| 8 | 1, 4, 7 | co 5951 | . . 3 class (𝐴 · 𝐵) |
| 9 | 4, 1, 7 | co 5951 | . . 3 class (𝐵 · 𝐴) |
| 10 | 8, 9 | wceq 1373 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulcom 8061 |
| Copyright terms: Public domain | W3C validator |