| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8026. Proofs should normally use mulcom 8096 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7965 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2180 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2180 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
| 7 | cmul 7972 | . . . 4 class · | |
| 8 | 1, 4, 7 | co 5974 | . . 3 class (𝐴 · 𝐵) |
| 9 | 4, 1, 7 | co 5974 | . . 3 class (𝐵 · 𝐴) |
| 10 | 8, 9 | wceq 1375 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulcom 8096 |
| Copyright terms: Public domain | W3C validator |