![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version |
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 7931. Proofs should normally use mulcom 8001 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7870 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2164 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2164 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | cmul 7877 | . . . 4 class · | |
8 | 1, 4, 7 | co 5918 | . . 3 class (𝐴 · 𝐵) |
9 | 4, 1, 7 | co 5918 | . . 3 class (𝐵 · 𝐴) |
10 | 8, 9 | wceq 1364 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
Colors of variables: wff set class |
This axiom is referenced by: mulcom 8001 |
Copyright terms: Public domain | W3C validator |