| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulcom | GIF version | ||
| Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8066. Proofs should normally use mulcom 8136 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 8005 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2200 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2200 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
| 7 | cmul 8012 | . . . 4 class · | |
| 8 | 1, 4, 7 | co 6007 | . . 3 class (𝐴 · 𝐵) |
| 9 | 4, 1, 7 | co 6007 | . . 3 class (𝐵 · 𝐴) |
| 10 | 8, 9 | wceq 1395 | . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulcom 8136 |
| Copyright terms: Public domain | W3C validator |