ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom GIF version

Axiom ax-mulcom 8068
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by Theorem axmulcom 8026. Proofs should normally use mulcom 8096 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7965 . . . 4 class
31, 2wcel 2180 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2180 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 7972 . . . 4 class ·
81, 4, 7co 5974 . . 3 class (𝐴 · 𝐵)
94, 1, 7co 5974 . . 3 class (𝐵 · 𝐴)
108, 9wceq 1375 . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
This axiom is referenced by:  mulcom  8096
  Copyright terms: Public domain W3C validator