ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi3 Unicode version

Theorem bi3 118
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.)
Assertion
Ref Expression
bi3  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ph )  ->  ( ph  <->  ps ) ) )

Proof of Theorem bi3
StepHypRef Expression
1 df-bi 116 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpri 112 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  ( ph 
<->  ps ) )
32ex 114 1  |-  ( (
ph  ->  ps )  -> 
( ( ps  ->  ph )  ->  ( ph  <->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  impbii  125  impbidd  126  bisym  224  bezoutlembi  11938
  Copyright terms: Public domain W3C validator