Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbii | Unicode version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | |
impbii.2 |
Ref | Expression |
---|---|
impbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 | |
2 | impbii.2 | . 2 | |
3 | bi3 118 | . 2 | |
4 | 1, 2, 3 | mp2 16 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom 139 biid 170 2th 173 pm5.74 178 bitri 183 bibi2i 226 bi2.04 247 pm5.4 248 imdi 249 impexp 261 ancom 264 pm4.45im 332 dfbi2 386 anass 399 pm5.32 449 jcab 593 notnotnot 624 con2b 659 imnan 680 2false 691 pm5.21nii 694 pm4.8 697 oibabs 704 orcom 718 ioran 742 oridm 747 orbi2i 752 or12 756 pm4.44 769 ordi 806 andi 808 pm4.72 817 stdcndc 835 stdcndcOLD 836 stdcn 837 dcnn 838 pm4.82 940 rnlem 966 3jaob 1292 xoranor 1367 falantru 1393 3impexp 1425 3impexpbicom 1426 alcom 1466 19.26 1469 19.3h 1541 19.3 1542 19.21h 1545 19.43 1616 19.9h 1631 excom 1652 19.41h 1673 19.41 1674 equcom 1694 equsalh 1714 equsex 1716 cbvalv1 1739 cbvexv1 1740 cbvalh 1741 cbvexh 1743 sbbii 1753 sbh 1764 equs45f 1790 sb6f 1791 sbcof2 1798 sbequ8 1835 sbidm 1839 sb5rf 1840 sb6rf 1841 equvin 1851 sbimv 1881 cbvalvw 1907 cbvexvw 1908 sbalyz 1987 eu2 2058 eu3h 2059 eu5 2061 mo3h 2067 euan 2070 axext4 2149 cleqh 2265 r19.26 2591 ralcom3 2632 ceqsex 2763 gencbvex 2771 gencbvex2 2772 gencbval 2773 eqvinc 2848 pm13.183 2863 rr19.3v 2864 rr19.28v 2865 reu6 2914 reu3 2915 sbnfc2 3104 difdif 3246 ddifnel 3252 ddifstab 3253 ssddif 3355 difin 3358 uneqin 3372 indifdir 3377 undif3ss 3382 difrab 3395 un00 3454 undifss 3488 ssdifeq0 3490 ralidm 3508 ralf0 3511 ralm 3512 elpr2 3597 snidb 3605 difsnb 3715 preq12b 3749 preqsn 3754 axpweq 4149 exmidn0m 4179 exmidsssn 4180 exmid0el 4182 exmidel 4183 exmidundif 4184 exmidundifim 4185 sspwb 4193 unipw 4194 opm 4211 opth 4214 ssopab2b 4253 elon2 4353 unexb 4419 eusvnfb 4431 eusv2nf 4433 ralxfrALT 4444 uniexb 4450 iunpw 4457 sucelon 4479 unon 4487 sucprcreg 4525 opthreg 4532 ordsuc 4539 dcextest 4557 peano2b 4591 opelxp 4633 opthprc 4654 relop 4753 issetid 4757 xpid11 4826 elres 4919 iss 4929 issref 4985 xpmlem 5023 sqxpeq0 5026 ssrnres 5045 dfrel2 5053 relrelss 5129 fn0 5306 funssxp 5356 f00 5378 f0bi 5379 dffo2 5413 ffoss 5463 f1o00 5466 fo00 5467 fv3 5508 dff2 5628 dffo4 5632 dffo5 5633 fmpt 5634 ffnfv 5642 fsn 5656 fsn2 5658 isores1 5781 ssoprab2b 5895 eqfnov2 5945 cnvoprab 6198 reldmtpos 6217 mapsn 6652 mapsncnv 6657 mptelixpg 6696 elixpsn 6697 ixpsnf1o 6698 en0 6757 en1 6761 dom0 6800 exmidpw 6870 exmidpweq 6871 pw1fin 6872 undifdcss 6884 fidcenum 6917 djuexb 7005 ctssdc 7074 exmidomni 7102 exmidfodomr 7156 exmidontri 7191 exmidontri2or 7195 onntri3or 7197 onntri2or 7198 elni2 7251 ltbtwnnqq 7352 enq0ref 7370 elnp1st2nd 7413 elrealeu 7766 elreal2 7767 le2tri3i 8003 elnn0nn 9152 elnnnn0b 9154 elnnnn0c 9155 elnnz 9197 elnn0z 9200 elnnz1 9210 elz2 9258 eluz2b2 9537 elnn1uz2 9541 elpqb 9583 elioo4g 9866 eluzfz2b 9964 fzm 9969 elfz1end 9986 fzass4 9993 elfz1b 10021 fz01or 10042 nn0fz0 10050 fzolb 10084 fzom 10095 elfzo0 10113 fzo1fzo0n0 10114 elfzo0z 10115 elfzo1 10121 rexanuz 10926 rexuz3 10928 sqrt0rlem 10941 fisum0diag 11378 fprod0diagfz 11565 infssuzex 11878 isprm6 12075 oddpwdclemdc 12101 nnoddn2prmb 12190 4sqlem4 12318 ennnfone 12354 ctinfom 12357 ctinf 12359 tgclb 12665 xmetunirn 12958 2sqlem2 13551 bj-nnsn 13574 bdeq 13665 bdop 13717 bdunexb 13762 bj-2inf 13780 bj-nn0suc 13806 exmidsbth 13863 trirec0 13883 redc0 13896 reap0 13897 |
Copyright terms: Public domain | W3C validator |