| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | Unicode version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 |
|
| impbii.2 |
|
| Ref | Expression |
|---|---|
| impbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 |
. 2
| |
| 2 | impbii.2 |
. 2
| |
| 3 | bi3 119 |
. 2
| |
| 4 | 1, 2, 3 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 671 imnan 692 2false 703 pm5.21nii 706 pm4.8 709 oibabs 716 orcom 730 ioran 754 oridm 759 orbi2i 764 or12 768 pm4.44 781 ordi 818 andi 820 pm4.72 829 stdcndc 847 stdcndcOLD 848 stdcn 849 dcnn 850 pm4.82 953 rnlem 979 3jaob 1315 xoranor 1397 falantru 1423 3impexp 1457 3impexpbicom 1458 alcom 1501 19.26 1504 19.3h 1576 19.3 1577 19.21h 1580 19.43 1651 19.9h 1666 excom 1687 19.41h 1708 19.41 1709 equcom 1729 equsalh 1749 equsex 1751 cbvalv1 1774 cbvexv1 1775 cbvalh 1776 cbvexh 1778 sbbii 1788 sbh 1799 equs45f 1825 sb6f 1826 sbcof2 1833 sbequ8 1870 sbidm 1874 sb5rf 1875 sb6rf 1876 equvin 1886 sbimv 1917 cbvalvw 1943 cbvexvw 1944 sbalyz 2027 eu2 2098 eu3h 2099 eu5 2101 mo3h 2107 euan 2110 axext4 2189 cleqh 2305 r19.26 2632 ralcom3 2674 ceqsex 2810 gencbvex 2819 gencbvex2 2820 gencbval 2821 eqvinc 2896 pm13.183 2911 rr19.3v 2912 rr19.28v 2913 reu6 2962 reu3 2963 sbnfc2 3154 difdif 3298 ddifnel 3304 ddifstab 3305 ssddif 3407 difin 3410 uneqin 3424 indifdir 3429 undif3ss 3434 difrab 3447 un00 3507 undifss 3541 ssdifeq0 3543 ralidm 3561 ralf0 3563 ralm 3564 elpr2 3655 snidb 3663 difsnb 3776 preq12b 3811 preqsn 3816 axpweq 4216 exmidn0m 4246 exmidsssn 4247 exmid0el 4249 exmidel 4250 exmidundif 4251 exmidundifim 4252 sspwb 4261 unipw 4262 opm 4279 opth 4282 ssopab2b 4324 elon2 4424 unexb 4490 eusvnfb 4502 eusv2nf 4504 ralxfrALT 4515 uniexb 4521 iunpw 4528 onsucb 4552 unon 4560 sucprcreg 4598 opthreg 4605 ordsuc 4612 dcextest 4630 peano2b 4664 opelxp 4706 opthprc 4727 relop 4829 issetid 4833 xpid11 4902 elres 4996 iss 5006 issref 5066 xpmlem 5104 sqxpeq0 5107 ssrnres 5126 dfrel2 5134 relrelss 5210 fn0 5397 funssxp 5447 f00 5469 f0bi 5470 dffo2 5504 ffoss 5556 f1o00 5559 fo00 5560 fv3 5601 dff2 5726 dffo4 5730 dffo5 5731 fmpt 5732 ffnfv 5740 fsn 5754 fsn2 5756 funop 5765 isores1 5885 ssoprab2b 6004 eqfnov2 6055 cnvoprab 6322 reldmtpos 6341 mapsn 6779 mapsncnv 6784 mptelixpg 6823 elixpsn 6824 ixpsnf1o 6825 en0 6889 en1 6893 dom0 6937 exmidpw 7007 exmidpweq 7008 pw1fin 7009 exmidpw2en 7011 undifdcss 7022 residfi 7044 fidcenum 7060 djuexb 7148 ctssdc 7217 exmidomni 7246 nninfinfwlpo 7284 nninfwlpo 7285 exmidfodomr 7314 exmidontri 7353 exmidontri2or 7357 onntri3or 7359 onntri2or 7360 dftap2 7365 exmidmotap 7375 elni2 7429 ltbtwnnqq 7530 enq0ref 7548 elnp1st2nd 7591 elrealeu 7944 elreal2 7945 le2tri3i 8183 elnn0nn 9339 elnnnn0b 9341 elnnnn0c 9342 elnnz 9384 elnn0z 9387 elnnz1 9397 elz2 9446 eluz2b2 9726 elnn1uz2 9730 elpqb 9773 elioo4g 10058 eluzfz2b 10157 fzm 10162 elfz1end 10179 fzass4 10186 elfz1b 10214 fz01or 10235 nn0fz0 10243 fzolb 10278 fzom 10289 elfzo0 10308 fzo1fzo0n0 10309 elfzo0z 10310 elfzo1 10316 infssuzex 10378 hash2en 10990 wrdexb 11008 0wrd0 11022 rexanuz 11332 rexuz3 11334 sqrt0rlem 11347 fisum0diag 11785 fprod0diagfz 11972 isprm6 12502 oddpwdclemdc 12528 nnoddn2prmb 12618 4sqlem4 12748 4sqexercise1 12754 ennnfone 12829 ctinfom 12832 ctinf 12834 fnpr2ob 13205 dfgrp2 13392 dfgrp3m 13464 dfgrp3me 13465 isnsg3 13576 invghm 13698 dvdsrzring 14398 zrhval 14412 tgclb 14570 xmetunirn 14863 dich0 15157 elply2 15240 2sqlem2 15625 bj-nnsn 15706 bdeq 15796 bdop 15848 bdunexb 15893 bj-2inf 15911 bj-nn0suc 15937 nnnninfen 15995 exmidsbth 16000 trirec0 16020 redc0 16033 reap0 16034 cndcap 16035 neap0mkv 16045 |
| Copyright terms: Public domain | W3C validator |