| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | Unicode version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 |
|
| impbii.2 |
|
| Ref | Expression |
|---|---|
| impbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 |
. 2
| |
| 2 | impbii.2 |
. 2
| |
| 3 | bi3 119 |
. 2
| |
| 4 | 1, 2, 3 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 671 imnan 692 2false 703 pm5.21nii 706 pm4.8 709 oibabs 716 orcom 730 ioran 754 oridm 759 orbi2i 764 or12 768 pm4.44 781 ordi 818 andi 820 pm4.72 829 stdcndc 847 stdcndcOLD 848 stdcn 849 dcnn 850 pm4.82 953 rnlem 979 3jaob 1315 xoranor 1397 falantru 1423 3impexp 1457 3impexpbicom 1458 alcom 1501 19.26 1504 19.3h 1576 19.3 1577 19.21h 1580 19.43 1651 19.9h 1666 excom 1687 19.41h 1708 19.41 1709 equcom 1729 equsalh 1749 equsex 1751 cbvalv1 1774 cbvexv1 1775 cbvalh 1776 cbvexh 1778 sbbii 1788 sbh 1799 equs45f 1825 sb6f 1826 sbcof2 1833 sbequ8 1870 sbidm 1874 sb5rf 1875 sb6rf 1876 equvin 1886 sbimv 1917 cbvalvw 1943 cbvexvw 1944 sbalyz 2027 eu2 2098 eu3h 2099 eu5 2101 mo3h 2107 euan 2110 axext4 2189 cleqh 2305 r19.26 2632 ralcom3 2674 ceqsex 2810 gencbvex 2819 gencbvex2 2820 gencbval 2821 eqvinc 2896 pm13.183 2911 rr19.3v 2912 rr19.28v 2913 reu6 2962 reu3 2963 sbnfc2 3154 difdif 3298 ddifnel 3304 ddifstab 3305 ssddif 3407 difin 3410 uneqin 3424 indifdir 3429 undif3ss 3434 difrab 3447 un00 3507 undifss 3541 ssdifeq0 3543 ralidm 3561 ralf0 3563 ralm 3564 elpr2 3655 snidb 3663 difsnb 3776 preq12b 3811 preqsn 3816 axpweq 4215 exmidn0m 4245 exmidsssn 4246 exmid0el 4248 exmidel 4249 exmidundif 4250 exmidundifim 4251 sspwb 4260 unipw 4261 opm 4278 opth 4281 ssopab2b 4323 elon2 4423 unexb 4489 eusvnfb 4501 eusv2nf 4503 ralxfrALT 4514 uniexb 4520 iunpw 4527 onsucb 4551 unon 4559 sucprcreg 4597 opthreg 4604 ordsuc 4611 dcextest 4629 peano2b 4663 opelxp 4705 opthprc 4726 relop 4828 issetid 4832 xpid11 4901 elres 4995 iss 5005 issref 5065 xpmlem 5103 sqxpeq0 5106 ssrnres 5125 dfrel2 5133 relrelss 5209 fn0 5395 funssxp 5445 f00 5467 f0bi 5468 dffo2 5502 ffoss 5554 f1o00 5557 fo00 5558 fv3 5599 dff2 5724 dffo4 5728 dffo5 5729 fmpt 5730 ffnfv 5738 fsn 5752 fsn2 5754 funop 5763 isores1 5883 ssoprab2b 6002 eqfnov2 6053 cnvoprab 6320 reldmtpos 6339 mapsn 6777 mapsncnv 6782 mptelixpg 6821 elixpsn 6822 ixpsnf1o 6823 en0 6887 en1 6891 dom0 6935 exmidpw 7005 exmidpweq 7006 pw1fin 7007 exmidpw2en 7009 undifdcss 7020 residfi 7042 fidcenum 7058 djuexb 7146 ctssdc 7215 exmidomni 7244 nninfinfwlpo 7282 nninfwlpo 7283 exmidfodomr 7312 exmidontri 7351 exmidontri2or 7355 onntri3or 7357 onntri2or 7358 dftap2 7363 exmidmotap 7373 elni2 7427 ltbtwnnqq 7528 enq0ref 7546 elnp1st2nd 7589 elrealeu 7942 elreal2 7943 le2tri3i 8181 elnn0nn 9337 elnnnn0b 9339 elnnnn0c 9340 elnnz 9382 elnn0z 9385 elnnz1 9395 elz2 9444 eluz2b2 9724 elnn1uz2 9728 elpqb 9771 elioo4g 10056 eluzfz2b 10155 fzm 10160 elfz1end 10177 fzass4 10184 elfz1b 10212 fz01or 10233 nn0fz0 10241 fzolb 10276 fzom 10287 elfzo0 10306 fzo1fzo0n0 10307 elfzo0z 10308 elfzo1 10314 infssuzex 10376 hash2en 10988 wrdexb 11006 0wrd0 11020 rexanuz 11299 rexuz3 11301 sqrt0rlem 11314 fisum0diag 11752 fprod0diagfz 11939 isprm6 12469 oddpwdclemdc 12495 nnoddn2prmb 12585 4sqlem4 12715 4sqexercise1 12721 ennnfone 12796 ctinfom 12799 ctinf 12801 fnpr2ob 13172 dfgrp2 13359 dfgrp3m 13431 dfgrp3me 13432 isnsg3 13543 invghm 13665 dvdsrzring 14365 zrhval 14379 tgclb 14537 xmetunirn 14830 dich0 15124 elply2 15207 2sqlem2 15592 bj-nnsn 15669 bdeq 15759 bdop 15811 bdunexb 15856 bj-2inf 15874 bj-nn0suc 15900 nnnninfen 15958 exmidsbth 15963 trirec0 15983 redc0 15996 reap0 15997 cndcap 15998 neap0mkv 16008 |
| Copyright terms: Public domain | W3C validator |