![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbii | Unicode version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
impbii.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbii.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | bi3 119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 16 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 634 con2b 669 imnan 690 2false 701 pm5.21nii 704 pm4.8 707 oibabs 714 orcom 728 ioran 752 oridm 757 orbi2i 762 or12 766 pm4.44 779 ordi 816 andi 818 pm4.72 827 stdcndc 845 stdcndcOLD 846 stdcn 847 dcnn 848 pm4.82 950 rnlem 976 3jaob 1302 xoranor 1377 falantru 1403 3impexp 1437 3impexpbicom 1438 alcom 1478 19.26 1481 19.3h 1553 19.3 1554 19.21h 1557 19.43 1628 19.9h 1643 excom 1664 19.41h 1685 19.41 1686 equcom 1706 equsalh 1726 equsex 1728 cbvalv1 1751 cbvexv1 1752 cbvalh 1753 cbvexh 1755 sbbii 1765 sbh 1776 equs45f 1802 sb6f 1803 sbcof2 1810 sbequ8 1847 sbidm 1851 sb5rf 1852 sb6rf 1853 equvin 1863 sbimv 1893 cbvalvw 1919 cbvexvw 1920 sbalyz 1999 eu2 2070 eu3h 2071 eu5 2073 mo3h 2079 euan 2082 axext4 2161 cleqh 2277 r19.26 2603 ralcom3 2645 ceqsex 2777 gencbvex 2785 gencbvex2 2786 gencbval 2787 eqvinc 2862 pm13.183 2877 rr19.3v 2878 rr19.28v 2879 reu6 2928 reu3 2929 sbnfc2 3119 difdif 3262 ddifnel 3268 ddifstab 3269 ssddif 3371 difin 3374 uneqin 3388 indifdir 3393 undif3ss 3398 difrab 3411 un00 3471 undifss 3505 ssdifeq0 3507 ralidm 3525 ralf0 3528 ralm 3529 elpr2 3616 snidb 3624 difsnb 3737 preq12b 3772 preqsn 3777 axpweq 4173 exmidn0m 4203 exmidsssn 4204 exmid0el 4206 exmidel 4207 exmidundif 4208 exmidundifim 4209 sspwb 4218 unipw 4219 opm 4236 opth 4239 ssopab2b 4278 elon2 4378 unexb 4444 eusvnfb 4456 eusv2nf 4458 ralxfrALT 4469 uniexb 4475 iunpw 4482 onsucb 4504 unon 4512 sucprcreg 4550 opthreg 4557 ordsuc 4564 dcextest 4582 peano2b 4616 opelxp 4658 opthprc 4679 relop 4779 issetid 4783 xpid11 4852 elres 4945 iss 4955 issref 5013 xpmlem 5051 sqxpeq0 5054 ssrnres 5073 dfrel2 5081 relrelss 5157 fn0 5337 funssxp 5387 f00 5409 f0bi 5410 dffo2 5444 ffoss 5495 f1o00 5498 fo00 5499 fv3 5540 dff2 5663 dffo4 5667 dffo5 5668 fmpt 5669 ffnfv 5677 fsn 5691 fsn2 5693 isores1 5818 ssoprab2b 5935 eqfnov2 5985 cnvoprab 6238 reldmtpos 6257 mapsn 6693 mapsncnv 6698 mptelixpg 6737 elixpsn 6738 ixpsnf1o 6739 en0 6798 en1 6802 dom0 6841 exmidpw 6911 exmidpweq 6912 pw1fin 6913 undifdcss 6925 fidcenum 6958 djuexb 7046 ctssdc 7115 exmidomni 7143 nninfwlpo 7180 exmidfodomr 7206 exmidontri 7241 exmidontri2or 7245 onntri3or 7247 onntri2or 7248 dftap2 7253 exmidmotap 7263 elni2 7316 ltbtwnnqq 7417 enq0ref 7435 elnp1st2nd 7478 elrealeu 7831 elreal2 7832 le2tri3i 8069 elnn0nn 9221 elnnnn0b 9223 elnnnn0c 9224 elnnz 9266 elnn0z 9269 elnnz1 9279 elz2 9327 eluz2b2 9606 elnn1uz2 9610 elpqb 9652 elioo4g 9937 eluzfz2b 10036 fzm 10041 elfz1end 10058 fzass4 10065 elfz1b 10093 fz01or 10114 nn0fz0 10122 fzolb 10156 fzom 10167 elfzo0 10185 fzo1fzo0n0 10186 elfzo0z 10187 elfzo1 10193 rexanuz 11000 rexuz3 11002 sqrt0rlem 11015 fisum0diag 11452 fprod0diagfz 11639 infssuzex 11953 isprm6 12150 oddpwdclemdc 12176 nnoddn2prmb 12265 4sqlem4 12393 ennnfone 12429 ctinfom 12432 ctinf 12434 fnpr2ob 12765 dfgrp2 12908 dfgrp3m 12975 dfgrp3me 12976 isnsg3 13073 dvdsrzring 13633 tgclb 13705 xmetunirn 13998 2sqlem2 14602 bj-nnsn 14625 bdeq 14715 bdop 14767 bdunexb 14812 bj-2inf 14830 bj-nn0suc 14856 exmidsbth 14913 trirec0 14933 redc0 14946 reap0 14947 cndcap 14948 neap0mkv 14958 |
Copyright terms: Public domain | W3C validator |