| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | Unicode version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 |
|
| impbii.2 |
|
| Ref | Expression |
|---|---|
| impbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 |
. 2
| |
| 2 | impbii.2 |
. 2
| |
| 3 | bi3 119 |
. 2
| |
| 4 | 1, 2, 3 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 605 notnotnot 637 con2b 673 imnan 694 2false 706 pm5.21nii 709 pm4.8 712 oibabs 719 orcom 733 ioran 757 oridm 762 orbi2i 767 or12 771 pm4.44 784 ordi 821 andi 823 pm4.72 832 stdcndc 850 stdcndcOLD 851 stdcn 852 dcnn 853 pm4.82 956 rnlem 982 3jaob 1336 xoranor 1419 falantru 1445 3impexp 1480 3impexpbicom 1481 alcom 1524 19.26 1527 19.3h 1599 19.3 1600 19.21h 1603 19.43 1674 19.9h 1689 excom 1710 19.41h 1731 19.41 1732 equcom 1752 equsalh 1772 equsex 1774 cbvalv1 1797 cbvexv1 1798 cbvalh 1799 cbvexh 1801 sbbii 1811 sbh 1822 equs45f 1848 sb6f 1849 sbcof2 1856 sbequ8 1893 sbidm 1897 sb5rf 1898 sb6rf 1899 equvin 1909 sbimv 1940 cbvalvw 1966 cbvexvw 1967 sbalyz 2050 eu2 2122 eu3h 2123 eu5 2125 mo3h 2131 euan 2134 axext4 2213 cleqh 2329 r19.26 2657 ralcom3 2699 ceqsex 2838 gencbvex 2847 gencbvex2 2848 gencbval 2849 eqvinc 2926 pm13.183 2941 rr19.3v 2942 rr19.28v 2943 reu6 2992 reu3 2993 sbnfc2 3185 difdif 3329 ddifnel 3335 ddifstab 3336 ssddif 3438 difin 3441 uneqin 3455 indifdir 3460 undif3ss 3465 difrab 3478 un00 3538 undifss 3572 ssdifeq0 3574 ralidm 3592 ralf0 3594 ralm 3595 elpr2 3688 snidb 3696 difsnb 3811 preq12b 3848 preqsn 3853 axpweq 4255 exmidn0m 4285 exmidsssn 4286 exmid0el 4288 exmidel 4289 exmidundif 4290 exmidundifim 4291 sspwb 4302 unipw 4303 opm 4320 opth 4323 ssopab2b 4365 elon2 4467 unexb 4533 eusvnfb 4545 eusv2nf 4547 ralxfrALT 4558 uniexb 4564 iunpw 4571 onsucb 4595 unon 4603 sucprcreg 4641 opthreg 4648 ordsuc 4655 dcextest 4673 peano2b 4707 opelxp 4749 opthprc 4770 relop 4872 issetid 4876 xpid11 4947 elres 5041 iss 5051 issref 5111 xpmlem 5149 sqxpeq0 5152 ssrnres 5171 dfrel2 5179 relrelss 5255 fn0 5443 funssxp 5493 f00 5517 f0bi 5518 dffo2 5552 ffoss 5604 f1o00 5608 fo00 5609 fv3 5650 dff2 5779 dffo4 5783 dffo5 5784 fmpt 5785 ffnfv 5793 fsn 5807 fsn2 5809 funop 5818 isores1 5938 ssoprab2b 6061 eqfnov2 6112 cnvoprab 6380 reldmtpos 6399 mapsn 6837 mapsncnv 6842 mptelixpg 6881 elixpsn 6882 ixpsnf1o 6883 en0 6947 en1 6951 dom0 6999 exmidpw 7070 exmidpweq 7071 pw1fin 7072 exmidpw2en 7074 undifdcss 7085 residfi 7107 fidcenum 7123 djuexb 7211 ctssdc 7280 exmidomni 7309 nninfinfwlpo 7347 nninfwlpo 7348 exmidfodomr 7382 iftrueb01 7408 exmidontri 7424 exmidontri2or 7428 onntri3or 7430 onntri2or 7431 dftap2 7437 exmidmotap 7447 elni2 7501 ltbtwnnqq 7602 enq0ref 7620 elnp1st2nd 7663 elrealeu 8016 elreal2 8017 le2tri3i 8255 elnn0nn 9411 elnnnn0b 9413 elnnnn0c 9414 elnnz 9456 elnn0z 9459 elnnz1 9469 elz2 9518 eluz2b2 9798 elnn1uz2 9802 elpqb 9845 elioo4g 10130 eluzfz2b 10229 fzm 10234 elfz1end 10251 fzass4 10258 elfz1b 10286 fz01or 10307 nn0fz0 10315 fzolb 10350 fzom 10361 elfzo0 10382 fzo1fzo0n0 10383 elfzo0z 10384 elfzo1 10391 infssuzex 10453 hash2en 11065 wrdexb 11083 0wrd0 11097 rexanuz 11499 rexuz3 11501 sqrt0rlem 11514 fisum0diag 11952 fprod0diagfz 12139 isprm6 12669 oddpwdclemdc 12695 nnoddn2prmb 12785 4sqlem4 12915 4sqexercise1 12921 ennnfone 12996 ctinfom 12999 ctinf 13001 fnpr2ob 13373 dfgrp2 13560 dfgrp3m 13632 dfgrp3me 13633 isnsg3 13744 invghm 13866 dvdsrzring 14567 zrhval 14581 tgclb 14739 xmetunirn 15032 dich0 15326 elply2 15409 2sqlem2 15794 umgrislfupgrenlem 15928 umgrislfupgrdom 15929 uspgrupgrushgr 15980 usgrumgruspgr 15983 usgruspgrben 15984 usgrislfuspgrdom 15988 bj-nnsn 16097 bdeq 16186 bdop 16238 bdunexb 16283 bj-2inf 16301 bj-nn0suc 16327 nnnninfen 16387 exmidsbth 16392 trirec0 16412 redc0 16425 reap0 16426 cndcap 16427 neap0mkv 16437 |
| Copyright terms: Public domain | W3C validator |