![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbii | Unicode version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
impbii.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
impbii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | impbii.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | bi3 119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 16 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 634 con2b 669 imnan 690 2false 701 pm5.21nii 704 pm4.8 707 oibabs 714 orcom 728 ioran 752 oridm 757 orbi2i 762 or12 766 pm4.44 779 ordi 816 andi 818 pm4.72 827 stdcndc 845 stdcndcOLD 846 stdcn 847 dcnn 848 pm4.82 950 rnlem 976 3jaob 1302 xoranor 1377 falantru 1403 3impexp 1437 3impexpbicom 1438 alcom 1478 19.26 1481 19.3h 1553 19.3 1554 19.21h 1557 19.43 1628 19.9h 1643 excom 1664 19.41h 1685 19.41 1686 equcom 1706 equsalh 1726 equsex 1728 cbvalv1 1751 cbvexv1 1752 cbvalh 1753 cbvexh 1755 sbbii 1765 sbh 1776 equs45f 1802 sb6f 1803 sbcof2 1810 sbequ8 1847 sbidm 1851 sb5rf 1852 sb6rf 1853 equvin 1863 sbimv 1893 cbvalvw 1919 cbvexvw 1920 sbalyz 1999 eu2 2070 eu3h 2071 eu5 2073 mo3h 2079 euan 2082 axext4 2161 cleqh 2277 r19.26 2603 ralcom3 2645 ceqsex 2777 gencbvex 2785 gencbvex2 2786 gencbval 2787 eqvinc 2862 pm13.183 2877 rr19.3v 2878 rr19.28v 2879 reu6 2928 reu3 2929 sbnfc2 3119 difdif 3262 ddifnel 3268 ddifstab 3269 ssddif 3371 difin 3374 uneqin 3388 indifdir 3393 undif3ss 3398 difrab 3411 un00 3471 undifss 3505 ssdifeq0 3507 ralidm 3525 ralf0 3528 ralm 3529 elpr2 3616 snidb 3624 difsnb 3737 preq12b 3772 preqsn 3777 axpweq 4173 exmidn0m 4203 exmidsssn 4204 exmid0el 4206 exmidel 4207 exmidundif 4208 exmidundifim 4209 sspwb 4218 unipw 4219 opm 4236 opth 4239 ssopab2b 4278 elon2 4378 unexb 4444 eusvnfb 4456 eusv2nf 4458 ralxfrALT 4469 uniexb 4475 iunpw 4482 onsucb 4504 unon 4512 sucprcreg 4550 opthreg 4557 ordsuc 4564 dcextest 4582 peano2b 4616 opelxp 4658 opthprc 4679 relop 4779 issetid 4783 xpid11 4852 elres 4945 iss 4955 issref 5013 xpmlem 5051 sqxpeq0 5054 ssrnres 5073 dfrel2 5081 relrelss 5157 fn0 5337 funssxp 5387 f00 5409 f0bi 5410 dffo2 5444 ffoss 5495 f1o00 5498 fo00 5499 fv3 5540 dff2 5662 dffo4 5666 dffo5 5667 fmpt 5668 ffnfv 5676 fsn 5690 fsn2 5692 isores1 5817 ssoprab2b 5934 eqfnov2 5984 cnvoprab 6237 reldmtpos 6256 mapsn 6692 mapsncnv 6697 mptelixpg 6736 elixpsn 6737 ixpsnf1o 6738 en0 6797 en1 6801 dom0 6840 exmidpw 6910 exmidpweq 6911 pw1fin 6912 undifdcss 6924 fidcenum 6957 djuexb 7045 ctssdc 7114 exmidomni 7142 nninfwlpo 7179 exmidfodomr 7205 exmidontri 7240 exmidontri2or 7244 onntri3or 7246 onntri2or 7247 dftap2 7252 exmidmotap 7262 elni2 7315 ltbtwnnqq 7416 enq0ref 7434 elnp1st2nd 7477 elrealeu 7830 elreal2 7831 le2tri3i 8068 elnn0nn 9220 elnnnn0b 9222 elnnnn0c 9223 elnnz 9265 elnn0z 9268 elnnz1 9278 elz2 9326 eluz2b2 9605 elnn1uz2 9609 elpqb 9651 elioo4g 9936 eluzfz2b 10035 fzm 10040 elfz1end 10057 fzass4 10064 elfz1b 10092 fz01or 10113 nn0fz0 10121 fzolb 10155 fzom 10166 elfzo0 10184 fzo1fzo0n0 10185 elfzo0z 10186 elfzo1 10192 rexanuz 10999 rexuz3 11001 sqrt0rlem 11014 fisum0diag 11451 fprod0diagfz 11638 infssuzex 11952 isprm6 12149 oddpwdclemdc 12175 nnoddn2prmb 12264 4sqlem4 12392 ennnfone 12428 ctinfom 12431 ctinf 12433 fnpr2ob 12764 dfgrp2 12907 dfgrp3m 12974 dfgrp3me 12975 isnsg3 13072 dvdsrzring 13532 tgclb 13604 xmetunirn 13897 2sqlem2 14501 bj-nnsn 14524 bdeq 14614 bdop 14666 bdunexb 14711 bj-2inf 14729 bj-nn0suc 14755 exmidsbth 14811 trirec0 14831 redc0 14844 reap0 14845 neap0mkv 14855 |
Copyright terms: Public domain | W3C validator |