Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbii | Unicode version |
Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
impbii.1 | |
impbii.2 |
Ref | Expression |
---|---|
impbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbii.1 | . 2 | |
2 | impbii.2 | . 2 | |
3 | bi3 118 | . 2 | |
4 | 1, 2, 3 | mp2 16 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom 139 biid 170 2th 173 pm5.74 178 bitri 183 bibi2i 226 bi2.04 247 pm5.4 248 imdi 249 impexp 261 ancom 264 pm4.45im 332 dfbi2 386 anass 399 pm5.32 450 jcab 598 notnotnot 629 con2b 664 imnan 685 2false 696 pm5.21nii 699 pm4.8 702 oibabs 709 orcom 723 ioran 747 oridm 752 orbi2i 757 or12 761 pm4.44 774 ordi 811 andi 813 pm4.72 822 stdcndc 840 stdcndcOLD 841 stdcn 842 dcnn 843 pm4.82 945 rnlem 971 3jaob 1297 xoranor 1372 falantru 1398 3impexp 1430 3impexpbicom 1431 alcom 1471 19.26 1474 19.3h 1546 19.3 1547 19.21h 1550 19.43 1621 19.9h 1636 excom 1657 19.41h 1678 19.41 1679 equcom 1699 equsalh 1719 equsex 1721 cbvalv1 1744 cbvexv1 1745 cbvalh 1746 cbvexh 1748 sbbii 1758 sbh 1769 equs45f 1795 sb6f 1796 sbcof2 1803 sbequ8 1840 sbidm 1844 sb5rf 1845 sb6rf 1846 equvin 1856 sbimv 1886 cbvalvw 1912 cbvexvw 1913 sbalyz 1992 eu2 2063 eu3h 2064 eu5 2066 mo3h 2072 euan 2075 axext4 2154 cleqh 2270 r19.26 2596 ralcom3 2637 ceqsex 2768 gencbvex 2776 gencbvex2 2777 gencbval 2778 eqvinc 2853 pm13.183 2868 rr19.3v 2869 rr19.28v 2870 reu6 2919 reu3 2920 sbnfc2 3109 difdif 3252 ddifnel 3258 ddifstab 3259 ssddif 3361 difin 3364 uneqin 3378 indifdir 3383 undif3ss 3388 difrab 3401 un00 3460 undifss 3494 ssdifeq0 3496 ralidm 3514 ralf0 3517 ralm 3518 elpr2 3603 snidb 3611 difsnb 3721 preq12b 3755 preqsn 3760 axpweq 4155 exmidn0m 4185 exmidsssn 4186 exmid0el 4188 exmidel 4189 exmidundif 4190 exmidundifim 4191 sspwb 4199 unipw 4200 opm 4217 opth 4220 ssopab2b 4259 elon2 4359 unexb 4425 eusvnfb 4437 eusv2nf 4439 ralxfrALT 4450 uniexb 4456 iunpw 4463 sucelon 4485 unon 4493 sucprcreg 4531 opthreg 4538 ordsuc 4545 dcextest 4563 peano2b 4597 opelxp 4639 opthprc 4660 relop 4759 issetid 4763 xpid11 4832 elres 4925 iss 4935 issref 4991 xpmlem 5029 sqxpeq0 5032 ssrnres 5051 dfrel2 5059 relrelss 5135 fn0 5315 funssxp 5365 f00 5387 f0bi 5388 dffo2 5422 ffoss 5472 f1o00 5475 fo00 5476 fv3 5517 dff2 5638 dffo4 5642 dffo5 5643 fmpt 5644 ffnfv 5652 fsn 5666 fsn2 5668 isores1 5791 ssoprab2b 5908 eqfnov2 5958 cnvoprab 6211 reldmtpos 6230 mapsn 6665 mapsncnv 6670 mptelixpg 6709 elixpsn 6710 ixpsnf1o 6711 en0 6770 en1 6774 dom0 6813 exmidpw 6883 exmidpweq 6884 pw1fin 6885 undifdcss 6897 fidcenum 6930 djuexb 7018 ctssdc 7087 exmidomni 7115 exmidfodomr 7170 exmidontri 7205 exmidontri2or 7209 onntri3or 7211 onntri2or 7212 elni2 7265 ltbtwnnqq 7366 enq0ref 7384 elnp1st2nd 7427 elrealeu 7780 elreal2 7781 le2tri3i 8017 elnn0nn 9166 elnnnn0b 9168 elnnnn0c 9169 elnnz 9211 elnn0z 9214 elnnz1 9224 elz2 9272 eluz2b2 9551 elnn1uz2 9555 elpqb 9597 elioo4g 9880 eluzfz2b 9978 fzm 9983 elfz1end 10000 fzass4 10007 elfz1b 10035 fz01or 10056 nn0fz0 10064 fzolb 10098 fzom 10109 elfzo0 10127 fzo1fzo0n0 10128 elfzo0z 10129 elfzo1 10135 rexanuz 10941 rexuz3 10943 sqrt0rlem 10956 fisum0diag 11393 fprod0diagfz 11580 infssuzex 11893 isprm6 12090 oddpwdclemdc 12116 nnoddn2prmb 12205 4sqlem4 12333 ennnfone 12369 ctinfom 12372 ctinf 12374 dfgrp2 12721 tgclb 12820 xmetunirn 13113 2sqlem2 13706 bj-nnsn 13729 bdeq 13820 bdop 13872 bdunexb 13917 bj-2inf 13935 bj-nn0suc 13961 exmidsbth 14018 trirec0 14038 redc0 14051 reap0 14052 |
Copyright terms: Public domain | W3C validator |