| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbii | Unicode version | ||
| Description: Infer an equivalence from an implication and its converse. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| impbii.1 |
|
| impbii.2 |
|
| Ref | Expression |
|---|---|
| impbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbii.1 |
. 2
| |
| 2 | impbii.2 |
. 2
| |
| 3 | bi3 119 |
. 2
| |
| 4 | 1, 2, 3 | mp2 16 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicom 140 biid 171 2th 174 pm5.74 179 bitri 184 bibi2i 227 bi2.04 248 pm5.4 249 imdi 250 impexp 263 ancom 266 pm4.45im 334 dfbi2 388 anass 401 pm5.32 453 jcab 603 notnotnot 635 con2b 671 imnan 692 2false 703 pm5.21nii 706 pm4.8 709 oibabs 716 orcom 730 ioran 754 oridm 759 orbi2i 764 or12 768 pm4.44 781 ordi 818 andi 820 pm4.72 829 stdcndc 847 stdcndcOLD 848 stdcn 849 dcnn 850 pm4.82 953 rnlem 979 3jaob 1315 xoranor 1397 falantru 1423 3impexp 1458 3impexpbicom 1459 alcom 1502 19.26 1505 19.3h 1577 19.3 1578 19.21h 1581 19.43 1652 19.9h 1667 excom 1688 19.41h 1709 19.41 1710 equcom 1730 equsalh 1750 equsex 1752 cbvalv1 1775 cbvexv1 1776 cbvalh 1777 cbvexh 1779 sbbii 1789 sbh 1800 equs45f 1826 sb6f 1827 sbcof2 1834 sbequ8 1871 sbidm 1875 sb5rf 1876 sb6rf 1877 equvin 1887 sbimv 1918 cbvalvw 1944 cbvexvw 1945 sbalyz 2028 eu2 2100 eu3h 2101 eu5 2103 mo3h 2109 euan 2112 axext4 2191 cleqh 2307 r19.26 2634 ralcom3 2676 ceqsex 2815 gencbvex 2824 gencbvex2 2825 gencbval 2826 eqvinc 2903 pm13.183 2918 rr19.3v 2919 rr19.28v 2920 reu6 2969 reu3 2970 sbnfc2 3162 difdif 3306 ddifnel 3312 ddifstab 3313 ssddif 3415 difin 3418 uneqin 3432 indifdir 3437 undif3ss 3442 difrab 3455 un00 3515 undifss 3549 ssdifeq0 3551 ralidm 3569 ralf0 3571 ralm 3572 elpr2 3665 snidb 3673 difsnb 3787 preq12b 3824 preqsn 3829 axpweq 4231 exmidn0m 4261 exmidsssn 4262 exmid0el 4264 exmidel 4265 exmidundif 4266 exmidundifim 4267 sspwb 4278 unipw 4279 opm 4296 opth 4299 ssopab2b 4341 elon2 4441 unexb 4507 eusvnfb 4519 eusv2nf 4521 ralxfrALT 4532 uniexb 4538 iunpw 4545 onsucb 4569 unon 4577 sucprcreg 4615 opthreg 4622 ordsuc 4629 dcextest 4647 peano2b 4681 opelxp 4723 opthprc 4744 relop 4846 issetid 4850 xpid11 4920 elres 5014 iss 5024 issref 5084 xpmlem 5122 sqxpeq0 5125 ssrnres 5144 dfrel2 5152 relrelss 5228 fn0 5415 funssxp 5465 f00 5489 f0bi 5490 dffo2 5524 ffoss 5576 f1o00 5580 fo00 5581 fv3 5622 dff2 5747 dffo4 5751 dffo5 5752 fmpt 5753 ffnfv 5761 fsn 5775 fsn2 5777 funop 5786 isores1 5906 ssoprab2b 6025 eqfnov2 6076 cnvoprab 6343 reldmtpos 6362 mapsn 6800 mapsncnv 6805 mptelixpg 6844 elixpsn 6845 ixpsnf1o 6846 en0 6910 en1 6914 dom0 6960 exmidpw 7031 exmidpweq 7032 pw1fin 7033 exmidpw2en 7035 undifdcss 7046 residfi 7068 fidcenum 7084 djuexb 7172 ctssdc 7241 exmidomni 7270 nninfinfwlpo 7308 nninfwlpo 7309 exmidfodomr 7343 iftrueb01 7369 exmidontri 7385 exmidontri2or 7389 onntri3or 7391 onntri2or 7392 dftap2 7398 exmidmotap 7408 elni2 7462 ltbtwnnqq 7563 enq0ref 7581 elnp1st2nd 7624 elrealeu 7977 elreal2 7978 le2tri3i 8216 elnn0nn 9372 elnnnn0b 9374 elnnnn0c 9375 elnnz 9417 elnn0z 9420 elnnz1 9430 elz2 9479 eluz2b2 9759 elnn1uz2 9763 elpqb 9806 elioo4g 10091 eluzfz2b 10190 fzm 10195 elfz1end 10212 fzass4 10219 elfz1b 10247 fz01or 10268 nn0fz0 10276 fzolb 10311 fzom 10322 elfzo0 10343 fzo1fzo0n0 10344 elfzo0z 10345 elfzo1 10351 infssuzex 10413 hash2en 11025 wrdexb 11043 0wrd0 11057 rexanuz 11414 rexuz3 11416 sqrt0rlem 11429 fisum0diag 11867 fprod0diagfz 12054 isprm6 12584 oddpwdclemdc 12610 nnoddn2prmb 12700 4sqlem4 12830 4sqexercise1 12836 ennnfone 12911 ctinfom 12914 ctinf 12916 fnpr2ob 13287 dfgrp2 13474 dfgrp3m 13546 dfgrp3me 13547 isnsg3 13658 invghm 13780 dvdsrzring 14480 zrhval 14494 tgclb 14652 xmetunirn 14945 dich0 15239 elply2 15322 2sqlem2 15707 umgrislfupgrenlem 15836 umgrislfupgrdom 15837 bj-nnsn 15869 bdeq 15958 bdop 16010 bdunexb 16055 bj-2inf 16073 bj-nn0suc 16099 nnnninfen 16160 exmidsbth 16165 trirec0 16185 redc0 16198 reap0 16199 cndcap 16200 neap0mkv 16210 |
| Copyright terms: Public domain | W3C validator |