![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimp | Unicode version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
biimp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 117 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simpli 111 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | simpld 112 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 666 pm5.19 706 con4biddc 857 con1biimdc 873 bijadc 882 pclem6 1374 albi 1468 exbi 1604 equsexd 1729 cbv2h 1748 cbv2w 1750 sbiedh 1787 eumo0 2057 ceqsalt 2765 vtoclgft 2789 spcgft 2816 pm13.183 2877 reu6 2928 reu3 2929 sbciegft 2995 ddifstab 3269 exmidsssnc 4205 fv3 5540 prnmaxl 7489 prnminu 7490 elabgft1 14615 elabgf2 14617 bj-axemptylem 14729 bj-inf2vn 14811 bj-inf2vn2 14812 bj-nn0sucALT 14815 |
Copyright terms: Public domain | W3C validator |