ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp Unicode version

Theorem biimp 118
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
biimp  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )

Proof of Theorem biimp
StepHypRef Expression
1 df-bi 117 . . 3  |-  ( ( ( ph  <->  ps )  ->  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )  /\  ( ( (
ph  ->  ps )  /\  ( ps  ->  ph )
)  ->  ( ph  <->  ps ) ) )
21simpli 111 . 2  |-  ( (
ph 
<->  ps )  ->  (
( ph  ->  ps )  /\  ( ps  ->  ph )
) )
32simpld 112 1  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  biimpi  120  bicom1  131  biimpd  144  ibd  178  pm5.74  179  bi3ant  224  pm5.501  244  pm5.32d  450  notbi  670  pm5.19  711  con4biddc  862  con1biimdc  878  bijadc  887  pclem6  1416  albi  1514  exbi  1650  equsexd  1775  cbv2h  1794  cbv2w  1796  sbiedh  1833  eumo0  2108  ceqsalt  2826  vtoclgft  2851  spcgft  2880  pm13.183  2941  reu6  2992  reu3  2993  sbciegft  3059  ddifstab  3336  exmidsssnc  4287  fv3  5650  prnmaxl  7675  prnminu  7676  elabgft1  16142  elabgf2  16144  bj-axemptylem  16255  bj-inf2vn  16337  bj-inf2vn2  16338  bj-nn0sucALT  16341
  Copyright terms: Public domain W3C validator