| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp | Unicode version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| biimp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 |
. . 3
| |
| 2 | 1 | simpli 111 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 668 pm5.19 708 con4biddc 859 con1biimdc 875 bijadc 884 pclem6 1394 albi 1491 exbi 1627 equsexd 1752 cbv2h 1771 cbv2w 1773 sbiedh 1810 eumo0 2085 ceqsalt 2798 vtoclgft 2823 spcgft 2850 pm13.183 2911 reu6 2962 reu3 2963 sbciegft 3029 ddifstab 3305 exmidsssnc 4247 fv3 5599 prnmaxl 7601 prnminu 7602 elabgft1 15714 elabgf2 15716 bj-axemptylem 15828 bj-inf2vn 15910 bj-inf2vn2 15911 bj-nn0sucALT 15914 |
| Copyright terms: Public domain | W3C validator |