| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimp | Unicode version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| biimp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 |
. . 3
| |
| 2 | 1 | simpli 111 |
. 2
|
| 3 | 2 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpi 120 bicom1 131 biimpd 144 ibd 178 pm5.74 179 bi3ant 224 pm5.501 244 pm5.32d 450 notbi 668 pm5.19 708 con4biddc 859 con1biimdc 875 bijadc 884 pclem6 1394 albi 1492 exbi 1628 equsexd 1753 cbv2h 1772 cbv2w 1774 sbiedh 1811 eumo0 2086 ceqsalt 2803 vtoclgft 2828 spcgft 2857 pm13.183 2918 reu6 2969 reu3 2970 sbciegft 3036 ddifstab 3313 exmidsssnc 4263 fv3 5622 prnmaxl 7636 prnminu 7637 elabgft1 15914 elabgf2 15916 bj-axemptylem 16027 bj-inf2vn 16109 bj-inf2vn2 16110 bj-nn0sucALT 16113 |
| Copyright terms: Public domain | W3C validator |