Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimp | Unicode version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
biimp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 116 | . . 3 | |
2 | 1 | simpli 110 | . 2 |
3 | 2 | simpld 111 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpi 119 bicom1 130 biimpd 143 ibd 177 pm5.74 178 bi3ant 223 pm5.501 243 pm5.32d 447 notbi 661 pm5.19 701 con4biddc 852 con1biimdc 868 bijadc 877 pclem6 1369 albi 1461 exbi 1597 equsexd 1722 cbv2h 1741 cbv2w 1743 sbiedh 1780 eumo0 2050 ceqsalt 2756 vtoclgft 2780 spcgft 2807 pm13.183 2868 reu6 2919 reu3 2920 sbciegft 2985 ddifstab 3259 exmidsssnc 4189 fv3 5519 prnmaxl 7450 prnminu 7451 elabgft1 13813 elabgf2 13815 bj-axemptylem 13927 bj-inf2vn 14009 bj-inf2vn2 14010 bj-nn0sucALT 14013 |
Copyright terms: Public domain | W3C validator |