ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi Unicode version

Theorem bezoutlembi 12145
Description: Lemma for Bézout's identity. Like bezoutlembz 12144 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y, z    B, d, x, y, z

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 12144 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  z  e.  ZZ )
3 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  A  e.  ZZ )
43ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  A  e.  ZZ )
5 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  x  e.  ZZ )
6 dvdsmultr1 11977 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ZZ )  ->  (
z  ||  A  ->  z 
||  ( A  x.  x ) ) )
72, 4, 5, 6syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  A  ->  z  ||  ( A  x.  x )
) )
8 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  B  e.  ZZ )
98ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  B  e.  ZZ )
10 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  y  e.  ZZ )
11 dvdsmultr1 11977 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ  /\  y  e.  ZZ )  ->  (
z  ||  B  ->  z 
||  ( B  x.  y ) ) )
122, 9, 10, 11syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  B  ->  z  ||  ( B  x.  y )
) )
134, 5zmulcld 9448 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( A  x.  x )  e.  ZZ )
149, 10zmulcld 9448 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( B  x.  y )  e.  ZZ )
15 dvds2add 11971 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  ( A  x.  x
)  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
162, 13, 14, 15syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
177, 12, 16syl2and 295 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
18 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )
1918breq2d 4042 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  d 
<->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2017, 19sylibrd 169 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  d ) )
21 bi3 119 . . . . . . . . 9  |-  ( ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) )  ->  ( (
( z  ||  A  /\  z  ||  B )  ->  z  ||  d
)  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
2220, 21syl5com 29 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2322ex 115 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
2423rexlimdvva 2619 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
25 imdistan 444 . . . . . . 7  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
26 ancom 266 . . . . . . . 8  |-  ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
27 ancom 266 . . . . . . . 8  |-  ( ( ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2826, 27imbi12i 239 . . . . . . 7  |-  ( ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
2925, 28bitr4i 187 . . . . . 6  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3024, 29sylib 122 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3130ralimdva 2561 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
32 0z 9331 . . . . . 6  |-  0  e.  ZZ
33 elex2 2776 . . . . . 6  |-  ( 0  e.  ZZ  ->  E. z 
z  e.  ZZ )
3432, 33ax-mp 5 . . . . 5  |-  E. z 
z  e.  ZZ
35 r19.27mv 3544 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3634, 35ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
37 r19.27mv 3544 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )  <->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3834, 37ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3931, 36, 383imtr3g 204 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
4039reximdva 2596 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. d  e. 
NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
411, 40mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030  (class class class)co 5919   0cc0 7874    + caddc 7877    x. cmul 7879   NN0cn0 9243   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934
This theorem is referenced by:  bezoutlemeu  12147  dfgcd3  12150  bezout  12151
  Copyright terms: Public domain W3C validator