ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi Unicode version

Theorem bezoutlembi 11600
Description: Lemma for Bézout's identity. Like bezoutlembz 11599 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y, z    B, d, x, y, z

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 11599 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 simpllr 506 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  z  e.  ZZ )
3 simpll 501 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  A  e.  ZZ )
43ad3antrrr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  A  e.  ZZ )
5 simplrl 507 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  x  e.  ZZ )
6 dvdsmultr1 11438 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ZZ )  ->  (
z  ||  A  ->  z 
||  ( A  x.  x ) ) )
72, 4, 5, 6syl3anc 1199 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  A  ->  z  ||  ( A  x.  x )
) )
8 simplr 502 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  B  e.  ZZ )
98ad3antrrr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  B  e.  ZZ )
10 simplrr 508 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  y  e.  ZZ )
11 dvdsmultr1 11438 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ  /\  y  e.  ZZ )  ->  (
z  ||  B  ->  z 
||  ( B  x.  y ) ) )
122, 9, 10, 11syl3anc 1199 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  B  ->  z  ||  ( B  x.  y )
) )
134, 5zmulcld 9133 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( A  x.  x )  e.  ZZ )
149, 10zmulcld 9133 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( B  x.  y )  e.  ZZ )
15 dvds2add 11434 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  ( A  x.  x
)  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
162, 13, 14, 15syl3anc 1199 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
177, 12, 16syl2and 291 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
18 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )
1918breq2d 3909 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  d 
<->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2017, 19sylibrd 168 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  d ) )
21 bi3 118 . . . . . . . . 9  |-  ( ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) )  ->  ( (
( z  ||  A  /\  z  ||  B )  ->  z  ||  d
)  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
2220, 21syl5com 29 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2322ex 114 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
2423rexlimdvva 2532 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
25 imdistan 438 . . . . . . 7  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
26 ancom 264 . . . . . . . 8  |-  ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
27 ancom 264 . . . . . . . 8  |-  ( ( ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2826, 27imbi12i 238 . . . . . . 7  |-  ( ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
2925, 28bitr4i 186 . . . . . 6  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3024, 29sylib 121 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3130ralimdva 2474 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
32 0z 9019 . . . . . 6  |-  0  e.  ZZ
33 elex2 2674 . . . . . 6  |-  ( 0  e.  ZZ  ->  E. z 
z  e.  ZZ )
3432, 33ax-mp 5 . . . . 5  |-  E. z 
z  e.  ZZ
35 r19.27mv 3427 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3634, 35ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
37 r19.27mv 3427 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )  <->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3834, 37ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3931, 36, 383imtr3g 203 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
4039reximdva 2509 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. d  e. 
NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
411, 40mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314   E.wex 1451    e. wcel 1463   A.wral 2391   E.wrex 2392   class class class wbr 3897  (class class class)co 5740   0cc0 7584    + caddc 7587    x. cmul 7589   NN0cn0 8931   ZZcz 9008    || cdvds 11400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-fz 9742  df-fl 9994  df-mod 10047  df-seqfrec 10170  df-exp 10244  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-dvds 11401
This theorem is referenced by:  bezoutlemeu  11602  dfgcd3  11605  bezout  11606
  Copyright terms: Public domain W3C validator