ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi Unicode version

Theorem bezoutlembi 11087
Description: Lemma for Bézout's identity. Like bezoutlembz 11086 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y, z    B, d, x, y, z

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 11086 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 simpllr 501 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  z  e.  ZZ )
3 simpll 496 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  A  e.  ZZ )
43ad3antrrr 476 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  A  e.  ZZ )
5 simplrl 502 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  x  e.  ZZ )
6 dvdsmultr1 10927 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ZZ )  ->  (
z  ||  A  ->  z 
||  ( A  x.  x ) ) )
72, 4, 5, 6syl3anc 1174 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  A  ->  z  ||  ( A  x.  x )
) )
8 simplr 497 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  B  e.  ZZ )
98ad3antrrr 476 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  B  e.  ZZ )
10 simplrr 503 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  y  e.  ZZ )
11 dvdsmultr1 10927 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ  /\  y  e.  ZZ )  ->  (
z  ||  B  ->  z 
||  ( B  x.  y ) ) )
122, 9, 10, 11syl3anc 1174 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  B  ->  z  ||  ( B  x.  y )
) )
134, 5zmulcld 8844 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( A  x.  x )  e.  ZZ )
149, 10zmulcld 8844 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( B  x.  y )  e.  ZZ )
15 dvds2add 10923 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  ( A  x.  x
)  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
162, 13, 14, 15syl3anc 1174 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
177, 12, 16syl2and 289 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
18 simpr 108 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )
1918breq2d 3849 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  d 
<->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2017, 19sylibrd 167 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  d ) )
21 bi3 117 . . . . . . . . 9  |-  ( ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) )  ->  ( (
( z  ||  A  /\  z  ||  B )  ->  z  ||  d
)  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
2220, 21syl5com 29 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2322ex 113 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
2423rexlimdvva 2496 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
25 imdistan 433 . . . . . . 7  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
26 ancom 262 . . . . . . . 8  |-  ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
27 ancom 262 . . . . . . . 8  |-  ( ( ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2826, 27imbi12i 237 . . . . . . 7  |-  ( ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
2925, 28bitr4i 185 . . . . . 6  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3024, 29sylib 120 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3130ralimdva 2441 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
32 0z 8731 . . . . . 6  |-  0  e.  ZZ
33 elex2 2635 . . . . . 6  |-  ( 0  e.  ZZ  ->  E. z 
z  e.  ZZ )
3432, 33ax-mp 7 . . . . 5  |-  E. z 
z  e.  ZZ
35 r19.27mv 3374 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3634, 35ax-mp 7 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
37 r19.27mv 3374 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )  <->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3834, 37ax-mp 7 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3931, 36, 383imtr3g 202 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
4039reximdva 2475 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. d  e. 
NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
411, 40mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289   E.wex 1426    e. wcel 1438   A.wral 2359   E.wrex 2360   class class class wbr 3837  (class class class)co 5634   0cc0 7329    + caddc 7332    x. cmul 7334   NN0cn0 8643   ZZcz 8720    || cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fl 9642  df-mod 9695  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-dvds 10890
This theorem is referenced by:  bezoutlemeu  11089  dfgcd3  11092  bezout  11093
  Copyright terms: Public domain W3C validator