ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi Unicode version

Theorem bezoutlembi 12359
Description: Lemma for Bézout's identity. Like bezoutlembz 12358 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y, z    B, d, x, y, z

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 12358 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  z  e.  ZZ )
3 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  A  e.  ZZ )
43ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  A  e.  ZZ )
5 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  x  e.  ZZ )
6 dvdsmultr1 12175 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ZZ )  ->  (
z  ||  A  ->  z 
||  ( A  x.  x ) ) )
72, 4, 5, 6syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  A  ->  z  ||  ( A  x.  x )
) )
8 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  B  e.  ZZ )
98ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  B  e.  ZZ )
10 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  y  e.  ZZ )
11 dvdsmultr1 12175 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ  /\  y  e.  ZZ )  ->  (
z  ||  B  ->  z 
||  ( B  x.  y ) ) )
122, 9, 10, 11syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  B  ->  z  ||  ( B  x.  y )
) )
134, 5zmulcld 9503 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( A  x.  x )  e.  ZZ )
149, 10zmulcld 9503 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( B  x.  y )  e.  ZZ )
15 dvds2add 12169 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  ( A  x.  x
)  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
162, 13, 14, 15syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
177, 12, 16syl2and 295 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
18 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )
1918breq2d 4057 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  d 
<->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2017, 19sylibrd 169 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  d ) )
21 bi3 119 . . . . . . . . 9  |-  ( ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) )  ->  ( (
( z  ||  A  /\  z  ||  B )  ->  z  ||  d
)  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
2220, 21syl5com 29 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2322ex 115 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
2423rexlimdvva 2631 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
25 imdistan 444 . . . . . . 7  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
26 ancom 266 . . . . . . . 8  |-  ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
27 ancom 266 . . . . . . . 8  |-  ( ( ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2826, 27imbi12i 239 . . . . . . 7  |-  ( ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
2925, 28bitr4i 187 . . . . . 6  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3024, 29sylib 122 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3130ralimdva 2573 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
32 0z 9385 . . . . . 6  |-  0  e.  ZZ
33 elex2 2788 . . . . . 6  |-  ( 0  e.  ZZ  ->  E. z 
z  e.  ZZ )
3432, 33ax-mp 5 . . . . 5  |-  E. z 
z  e.  ZZ
35 r19.27mv 3557 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3634, 35ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
37 r19.27mv 3557 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )  <->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3834, 37ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3931, 36, 383imtr3g 204 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
4039reximdva 2608 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. d  e. 
NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
411, 40mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4045  (class class class)co 5946   0cc0 7927    + caddc 7930    x. cmul 7932   NN0cn0 9297   ZZcz 9374    || cdvds 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132
This theorem is referenced by:  bezoutlemeu  12361  dfgcd3  12364  bezout  12365
  Copyright terms: Public domain W3C validator