ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlembi Unicode version

Theorem bezoutlembi 12008
Description: Lemma for Bézout's identity. Like bezoutlembz 12007 but the greatest common divisor condition is a biconditional, not just an implication. (Contributed by Mario Carneiro and Jim Kingdon, 8-Jan-2022.)
Assertion
Ref Expression
bezoutlembi  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y, z    B, d, x, y, z

Proof of Theorem bezoutlembi
StepHypRef Expression
1 bezoutlembz 12007 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
2 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  z  e.  ZZ )
3 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  A  e.  ZZ )
43ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  A  e.  ZZ )
5 simplrl 535 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  x  e.  ZZ )
6 dvdsmultr1 11840 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  A  e.  ZZ  /\  x  e.  ZZ )  ->  (
z  ||  A  ->  z 
||  ( A  x.  x ) ) )
72, 4, 5, 6syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  A  ->  z  ||  ( A  x.  x )
) )
8 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  B  e.  ZZ )
98ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  B  e.  ZZ )
10 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  y  e.  ZZ )
11 dvdsmultr1 11840 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  B  e.  ZZ  /\  y  e.  ZZ )  ->  (
z  ||  B  ->  z 
||  ( B  x.  y ) ) )
122, 9, 10, 11syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  B  ->  z  ||  ( B  x.  y )
) )
134, 5zmulcld 9383 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( A  x.  x )  e.  ZZ )
149, 10zmulcld 9383 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( B  x.  y )  e.  ZZ )
15 dvds2add 11834 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  ( A  x.  x
)  e.  ZZ  /\  ( B  x.  y
)  e.  ZZ )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
162, 13, 14, 15syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  ( A  x.  x )  /\  z  ||  ( B  x.  y
) )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
177, 12, 16syl2and 295 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
18 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )
1918breq2d 4017 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( z  ||  d 
<->  z  ||  ( ( A  x.  x )  +  ( B  x.  y ) ) ) )
2017, 19sylibrd 169 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  A  /\  z  ||  B )  ->  z  ||  d ) )
21 bi3 119 . . . . . . . . 9  |-  ( ( z  ||  d  -> 
( z  ||  A  /\  z  ||  B ) )  ->  ( (
( z  ||  A  /\  z  ||  B )  ->  z  ||  d
)  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )
2220, 21syl5com 29 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  d  =  ( ( A  x.  x )  +  ( B  x.  y ) ) )  ->  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2322ex 115 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
2423rexlimdvva 2602 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) ) )
25 imdistan 444 . . . . . . 7  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
26 ancom 266 . . . . . . . 8  |-  ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
27 ancom 266 . . . . . . . 8  |-  ( ( ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
2826, 27imbi12i 239 . . . . . . 7  |-  ( ( ( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) )  <-> 
( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  /\  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) ) )
2925, 28bitr4i 187 . . . . . 6  |-  ( ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  ->  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B
) ) ) )  <-> 
( ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3024, 29sylib 122 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  /\  z  e.  ZZ )  ->  (
( ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3130ralimdva 2544 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
32 0z 9266 . . . . . 6  |-  0  e.  ZZ
33 elex2 2755 . . . . . 6  |-  ( 0  e.  ZZ  ->  E. z 
z  e.  ZZ )
3432, 33ax-mp 5 . . . . 5  |-  E. z 
z  e.  ZZ
35 r19.27mv 3521 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  ->  (
z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3634, 35ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
37 r19.27mv 3521 . . . . 5  |-  ( E. z  z  e.  ZZ  ->  ( A. z  e.  ZZ  ( ( z 
||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )  <->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
3834, 37ax-mp 5 . . . 4  |-  ( A. z  e.  ZZ  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
3931, 36, 383imtr3g 204 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  d  e.  NN0 )  ->  ( ( A. z  e.  ZZ  (
z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) ) ) )
4039reximdva 2579 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. d  e. 
NN0  ( A. z  e.  ZZ  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
411, 40mpd 13 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   0cc0 7813    + caddc 7816    x. cmul 7818   NN0cn0 9178   ZZcz 9255    || cdvds 11796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797
This theorem is referenced by:  bezoutlemeu  12010  dfgcd3  12013  bezout  12014
  Copyright terms: Public domain W3C validator