Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dcdc Unicode version

Theorem bj-dcdc 13650
Description: Decidability of a proposition is decidable if and only if that proposition is decidable. DECID is idempotent. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
bj-dcdc  |-  (DECID DECID  ph  <-> DECID  ph )

Proof of Theorem bj-dcdc
StepHypRef Expression
1 nndc 841 . 2  |-  -.  -. DECID  ph
2 bj-nnbidc 13648 . 2  |-  ( -. 
-. DECID  ph  ->  (DECID DECID  ph  <-> DECID  ph )
)
31, 2ax-mp 5 1  |-  (DECID DECID  ph  <-> DECID  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator