ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndc Unicode version

Theorem nndc 841
Description: Double negation of decidability of a formula. Intuitionistic logic refutes the negation of decidability (but does not prove decidability) of any formula.

This should not trick the reader into thinking that  -.  -. EXMID is provable in intuitionistic logic. Indeed, if we could quantify over formula metavariables, then generalizing nnexmid 840 over  ph would give " |-  A. ph -.  -. DECID  ph", but EXMID is " A. phDECID 
ph", so proving 
-.  -. EXMID would amount to proving " -.  -.  A. phDECID  ph", which is not implied by the above theorem. Indeed, the converse of nnal 1637 does not hold. Since our system does not allow quantification over formula metavariables, we can reproduce this argument by representing formulas as subsets of  ~P 1o, like we do in our definition of EXMID (df-exmid 4174): then, we can prove  A. x  e. 
~P 1o -.  -. DECID  x  =  1o but we cannot prove  -.  -.  A. x  e.  ~P 1oDECID  x  =  1o because the converse of nnral 2456 does not hold.

Actually,  -.  -. EXMID is not provable in intuitionistic logic since intuitionistic logic has models satisfying  -. EXMID and noncontradiction holds (pm3.24 683). (Contributed by BJ, 9-Oct-2019.) Add explanation on non-provability of  -. 
-. EXMID. (Revised by BJ, 11-Aug-2024.)

Assertion
Ref Expression
nndc  |-  -.  -. DECID  ph

Proof of Theorem nndc
StepHypRef Expression
1 nnexmid 840 . 2  |-  -.  -.  ( ph  \/  -.  ph )
2 df-dc 825 . . 3  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
32notbii 658 . 2  |-  ( -. DECID  ph  <->  -.  ( ph  \/  -.  ph ) )
41, 3mtbir 661 1  |-  -.  -. DECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 698  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 825
This theorem is referenced by:  bj-dcdc  13650  bj-stdc  13651
  Copyright terms: Public domain W3C validator