HomeHome Intuitionistic Logic Explorer
Theorem List (p. 149 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14801-14900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsetsmstsetg 14801 The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
 |-  ( ph  ->  X  =  ( Base `  M )
 )   &    |-  ( ph  ->  D  =  ( ( dist `  M )  |`  ( X  X.  X ) ) )   &    |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )   &    |-  ( ph  ->  M  e.  V )   &    |-  ( ph  ->  (
 MetOpen `  D )  e.  W )   =>    |-  ( ph  ->  ( MetOpen `  D )  =  (TopSet `  K ) )
 
Theoremmopni 14802* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A ) 
 ->  E. x  e.  ran  ( ball `  D )
 ( P  e.  x  /\  x  C_  A ) )
 
Theoremmopni2 14803* An open set of a metric space includes a ball around each of its points. (Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A ) 
 ->  E. x  e.  RR+  ( P ( ball `  D ) x )  C_  A )
 
Theoremmopni3 14804* An open set of a metric space includes an arbitrarily small ball around each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  P  e.  A )  /\  R  e.  RR+ )  ->  E. x  e.  RR+  ( x  <  R  /\  ( P (
 ball `  D ) x )  C_  A )
 )
 
Theoremblssopn 14805 The balls of a metric space are open sets. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  ran  ( ball `  D )  C_  J )
 
Theoremunimopn 14806 The union of a collection of open sets of a metric space is open. Theorem T2 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremmopnin 14807 The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  J  /\  B  e.  J ) 
 ->  ( A  i^i  B )  e.  J )
 
Theoremmopn0 14808 The empty set is an open set of a metric space. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  -> 
 (/)  e.  J )
 
Theoremrnblopn 14809 A ball of a metric space is an open set. (Contributed by NM, 12-Sep-2006.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  B  e.  ran  ( ball `  D )
 )  ->  B  e.  J )
 
Theoremblopn 14810 A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR* )  ->  ( P ( ball `  D ) R )  e.  J )
 
Theoremneibl 14811* The neighborhoods around a point  P of a metric space are those subsets containing a ball around  P. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J ) `  { P }
 ) 
 <->  ( N  C_  X  /\  E. r  e.  RR+  ( P ( ball `  D ) r )  C_  N ) ) )
 
Theoremblnei 14812 A ball around a point is a neighborhood of the point. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  R  e.  RR+ )  ->  ( P ( ball `  D ) R )  e.  ( ( nei `  J ) `  { P } ) )
 
Theoremblsscls2 14813* A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
 |-  J  =  ( MetOpen `  D )   &    |-  S  =  {
 z  e.  X  |  ( P D z ) 
 <_  R }   =>    |-  ( ( ( D  e.  ( *Met `  X )  /\  P  e.  X )  /\  ( R  e.  RR*  /\  T  e.  RR*  /\  R  <  T ) )  ->  S  C_  ( P ( ball `  D ) T ) )
 
Theoremmetss 14814* Two ways of saying that metric  D generates a finer topology than metric  C. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( J 
 C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x (
 ball `  D ) s )  C_  ( x ( ball `  C )
 r ) ) )
 
Theoremmetequiv 14815* Two ways of saying that two metrics generate the same topology. Two metrics satisfying the right-hand side are said to be (topologically) equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by Mario Carneiro, 12-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( J  =  K  <->  A. x  e.  X  ( A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D )
 s )  C_  ( x ( ball `  C ) r )  /\  A. a  e.  RR+  E. b  e.  RR+  ( x (
 ball `  C ) b )  C_  ( x ( ball `  D )
 a ) ) ) )
 
Theoremmetequiv2 14816* If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X ) )  ->  ( A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( x ( ball `  C ) s )  =  ( x (
 ball `  D ) s ) )  ->  J  =  K ) )
 
Theoremmetss2lem 14817* Lemma for metss2 14818. (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  ( ph  ->  C  e.  ( Met `  X ) )   &    |-  ( ph  ->  D  e.  ( Met `  X )
 )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( x C y )  <_  ( R  x.  ( x D y ) ) )   =>    |-  ( ( ph  /\  ( x  e.  X  /\  S  e.  RR+ ) ) 
 ->  ( x ( ball `  D ) ( S 
 /  R ) ) 
 C_  ( x (
 ball `  C ) S ) )
 
Theoremmetss2 14818* If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), then  D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  ( ph  ->  C  e.  ( Met `  X ) )   &    |-  ( ph  ->  D  e.  ( Met `  X )
 )   &    |-  ( ph  ->  R  e.  RR+ )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( x C y )  <_  ( R  x.  ( x D y ) ) )   =>    |-  ( ph  ->  J  C_  K )
 
Theoremcomet 14819* The composition of an extended metric with a monotonic subadditive function is an extended metric. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ph  ->  D  e.  ( *Met `  X ) )   &    |-  ( ph  ->  F : ( 0 [,] +oo ) --> RR* )   &    |-  ( ( ph  /\  x  e.  ( 0 [,] +oo ) )  ->  ( ( F `  x )  =  0  <->  x  =  0 ) )   &    |-  ( ( ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) ) )  ->  ( x  <_  y  ->  ( F `  x ) 
 <_  ( F `  y
 ) ) )   &    |-  (
 ( ph  /\  ( x  e.  ( 0 [,] +oo )  /\  y  e.  ( 0 [,] +oo ) ) )  ->  ( F `  ( x +e y ) )  <_  ( ( F `  x ) +e ( F `  y ) ) )   =>    |-  ( ph  ->  ( F  o.  D )  e.  ( *Met `  X )
 )
 
Theorembdmetval 14820* Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C : ( X  X.  X ) --> RR*  /\  R  e.  RR* )  /\  ( A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  = inf ( { ( A C B ) ,  R } ,  RR* ,  <  ) )
 
Theorembdxmet 14821* The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X ) )
 
Theorembdmet 14822* The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
 
Theorembdbl 14823* The standard bounded metric corresponding to  C generates the same balls as  C for radii less than  R. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  /\  ( P  e.  X  /\  S  e.  RR*  /\  S  <_  R ) )  ->  ( P ( ball `  D ) S )  =  ( P ( ball `  C ) S ) )
 
Theorembdmopn 14824* The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
 |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )   &    |-  J  =  ( MetOpen `  C )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  ( MetOpen `  D )
 )
 
Theoremmopnex 14825* The topology generated by an extended metric can also be generated by a true metric. Thus, "metrizable topologies" can equivalently be defined in terms of metrics or extended metrics. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  J  =  ( MetOpen `  D )   =>    |-  ( D  e.  ( *Met `  X )  ->  E. d  e.  ( Met `  X ) J  =  ( MetOpen `  d
 ) )
 
Theoremmetrest 14826 Two alternate formulations of a subspace topology of a metric space topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened by Mario Carneiro, 5-Jan-2014.)
 |-  D  =  ( C  |`  ( Y  X.  Y ) )   &    |-  J  =  (
 MetOpen `  C )   &    |-  K  =  ( MetOpen `  D )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  =  K )
 
Theoremxmetxp 14827* The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   =>    |-  ( ph  ->  P  e.  ( *Met `  ( X  X.  Y ) ) )
 
Theoremxmetxpbl 14828* The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point  C with radius  R. (Contributed by Jim Kingdon, 22-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  R  e.  RR* )   &    |-  ( ph  ->  C  e.  ( X  X.  Y ) )   =>    |-  ( ph  ->  ( C ( ball `  P ) R )  =  ( ( ( 1st `  C ) ( ball `  M ) R )  X.  (
 ( 2nd `  C )
 ( ball `  N ) R ) ) )
 
Theoremxmettxlem 14829* Lemma for xmettx 14830. (Contributed by Jim Kingdon, 15-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  C_  ( J  tX  K ) )
 
Theoremxmettx 14830* The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
 |-  P  =  ( u  e.  ( X  X.  Y ) ,  v  e.  ( X  X.  Y )  |->  sup ( { (
 ( 1st `  u ) M ( 1st `  v
 ) ) ,  (
 ( 2nd `  u ) N ( 2nd `  v
 ) ) } ,  RR*
 ,  <  ) )   &    |-  ( ph  ->  M  e.  ( *Met `  X )
 )   &    |-  ( ph  ->  N  e.  ( *Met `  Y ) )   &    |-  J  =  (
 MetOpen `  M )   &    |-  K  =  ( MetOpen `  N )   &    |-  L  =  ( MetOpen `  P )   =>    |-  ( ph  ->  L  =  ( J  tX  K )
 )
 
9.2.5  Continuity in metric spaces
 
Theoremmetcnp3 14831* Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C )
 z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
 
Theoremmetcnp 14832* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
Theoremmetcnp2 14833* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. The distance arguments are swapped compared to metcnp 14832 (and Munkres' metcn 14834) for compatibility with df-lm 14510. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( w C P )  <  z  ->  (
 ( F `  w ) D ( F `  P ) )  < 
 y ) ) ) )
 
Theoremmetcn 14834* Two ways to say a mapping from metric  C to metric  D is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon"  y there is a positive "delta"  z such that a distance less than delta in  C maps to a distance less than epsilon in  D. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. x  e.  X  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( x C w )  <  z  ->  ( ( F `  x ) D ( F `  w ) )  <  y ) ) ) )
 
Theoremmetcnpi 14835* Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 14832. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  <  x  ->  ( ( F `  P ) D ( F `  y ) )  <  A ) )
 
Theoremmetcnpi2 14836* Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 14833. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <  x  ->  ( ( F `  y ) D ( F `  P ) )  <  A ) )
 
Theoremmetcnpi3 14837* Epsilon-delta property of a metric space function continuous at  P. A variation of metcnpi2 14836 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   =>    |-  ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y ) ) 
 /\  ( F  e.  ( ( J  CnP  K ) `  P ) 
 /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( y C P )  <_  x  ->  ( ( F `  y ) D ( F `  P ) )  <_  A )
 )
 
Theoremtxmetcnp 14838* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 /\  ( A  e.  X  /\  B  e.  Y ) )  ->  ( F  e.  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) ) )
 
Theoremtxmetcn 14839* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( MetOpen `  C )   &    |-  K  =  (
 MetOpen `  D )   &    |-  L  =  ( MetOpen `  E )   =>    |-  (
 ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  E  e.  ( *Met `  Z ) ) 
 ->  ( F  e.  (
 ( J  tX  K )  Cn  L )  <->  ( F :
 ( X  X.  Y )
 --> Z  /\  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
 ( ( x C u )  <  w  /\  ( y D v )  <  w ) 
 ->  ( ( x F y ) E ( u F v ) )  <  z ) ) ) )
 
Theoremmetcnpd 14840* Two ways to say a mapping from metric  C to metric  D is continuous at point  P. (Contributed by Jim Kingdon, 14-Jun-2023.)
 |-  ( ph  ->  J  =  ( MetOpen `  C )
 )   &    |-  ( ph  ->  K  =  ( MetOpen `  D )
 )   &    |-  ( ph  ->  C  e.  ( *Met `  X ) )   &    |-  ( ph  ->  D  e.  ( *Met `  Y ) )   &    |-  ( ph  ->  P  e.  X )   =>    |-  ( ph  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X
 --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  X  ( ( P C w )  <  z  ->  ( ( F `  P ) D ( F `  w ) )  <  y ) ) ) )
 
9.2.6  Topology on the reals
 
Theoremqtopbasss 14841* The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  S  C_  RR*   &    |-  ( ( x  e.  S  /\  y  e.  S )  ->  sup ( { x ,  y } ,  RR* ,  <  )  e.  S )   &    |-  ( ( x  e.  S  /\  y  e.  S )  -> inf ( { x ,  y } ,  RR* ,  <  )  e.  S )   =>    |-  ( (,) " ( S  X.  S ) )  e.  TopBases
 
Theoremqtopbas 14842 The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
 |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
 
Theoremretopbas 14843 A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
 |- 
 ran  (,)  e.  TopBases
 
Theoremretop 14844 The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
 |-  ( topGen `  ran  (,) )  e.  Top
 
Theoremuniretop 14845 The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.)
 |- 
 RR  =  U. ( topGen `
  ran  (,) )
 
Theoremretopon 14846 The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( topGen `  ran  (,) )  e.  (TopOn `  RR )
 
Theoremretps 14847 The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.)
 |-  K  =  { <. (
 Base `  ndx ) ,  RR >. ,  <. (TopSet `  ndx ) ,  ( topGen `  ran  (,) ) >. }   =>    |-  K  e.  TopSp
 
Theoremiooretopg 14848 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  e.  ( topGen `  ran  (,) ) )
 
Theoremcnmetdval 14849 Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremcnmet 14850 The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
 |-  ( abs  o.  -  )  e.  ( Met `  CC )
 
Theoremcnxmet 14851 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  ( abs  o.  -  )  e.  ( *Met `  CC )
 
Theoremcntoptopon 14852 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcntoptop 14853 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  J  e.  Top
 
Theoremcnbl0 14854 Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,) R ) )  =  ( 0 (
 ball `  D ) R ) )
 
Theoremcnblcld 14855* Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  D  =  ( abs 
 o.  -  )   =>    |-  ( R  e.  RR* 
 ->  ( `' abs " (
 0 [,] R ) )  =  { x  e. 
 CC  |  ( 0 D x )  <_  R } )
 
Theoremcnfldms 14856 The complex number field is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  MetSp
 
Theoremcnfldxms 14857 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  *MetSp
 
Theoremcnfldtps 14858 The complex number field is a topological space. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-fld  e.  TopSp
 
Theoremcnfldtopn 14859 The topology of the complex numbers. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  =  ( MetOpen `  ( abs  o. 
 -  ) )
 
Theoremcnfldtopon 14860 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  (TopOn `  CC )
 
Theoremcnfldtop 14861 The topology of the complex numbers is a topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  J  e.  Top
 
Theoremunicntopcntop 14862 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  =  U. ( MetOpen `  ( abs  o.  -  ) )
 
Theoremunicntop 14863 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  =  U. ( TopOpen ` fld )
 
Theoremcnopncntop 14864 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
 |- 
 CC  e.  ( MetOpen `  ( abs  o.  -  )
 )
 
Theoremcnopn 14865 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |- 
 CC  e.  ( TopOpen ` fld )
 
Theoremreopnap 14866* The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
 |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen `  ran  (,) )
 )
 
Theoremremetdval 14867 Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A D B )  =  ( abs `  ( A  -  B ) ) )
 
Theoremremet 14868 The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( Met `  RR )
 
Theoremrexmet 14869 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  D  e.  ( *Met `  RR )
 
Theorembl2ioo 14870 A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (
 ball `  D ) B )  =  ( ( A  -  B ) (,) ( A  +  B ) ) )
 
Theoremioo2bl 14871 An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  =  ( ( ( A  +  B )  /  2 ) (
 ball `  D ) ( ( B  -  A )  /  2 ) ) )
 
Theoremioo2blex 14872 An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A (,) B )  e.  ran  ( ball `  D ) )
 
Theoremblssioo 14873 The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   =>    |- 
 ran  ( ball `  D )  C_  ran  (,)
 
Theoremtgioo 14874 The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
 |-  D  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )   &    |-  J  =  (
 MetOpen `  D )   =>    |-  ( topGen `  ran  (,) )  =  J
 
Theoremtgqioo 14875 The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
 |-  Q  =  ( topGen `  ( (,) " ( QQ 
 X.  QQ ) ) )   =>    |-  ( topGen `  ran  (,) )  =  Q
 
Theoremresubmet 14876 The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
 |-  R  =  ( topGen `  ran  (,) )   &    |-  J  =  (
 MetOpen `  ( ( abs 
 o.  -  )  |`  ( A  X.  A ) ) )   =>    |-  ( A  C_  RR  ->  J  =  ( Rt  A ) )
 
Theoremtgioo2cntop 14877 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |-  ( topGen `  ran  (,) )  =  ( Jt  RR )
 
Theoremrerestcntop 14878 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
Theoremtgioo2 14879 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( topGen `
  ran  (,) )  =  ( Jt  RR )
 
Theoremrerest 14880 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.)
 |-  J  =  ( TopOpen ` fld )   &    |-  R  =  ( topGen `  ran  (,) )   =>    |-  ( A  C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
 
Theoremaddcncntoplem 14881* Lemma for addcncntop 14882, subcncntop 14883, and mulcncntop 14884. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |- 
 .+  : ( CC 
 X.  CC ) --> CC   &    |-  (
 ( a  e.  RR+  /\  b  e.  CC  /\  c  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  b ) )  < 
 y  /\  ( abs `  ( v  -  c
 ) )  <  z
 )  ->  ( abs `  ( ( u  .+  v )  -  (
 b  .+  c )
 ) )  <  a
 ) )   =>    |- 
 .+  e.  ( ( J  tX  J )  Cn  J )
 
Theoremaddcncntop 14882 Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 +  e.  ( ( J  tX  J )  Cn  J )
 
Theoremsubcncntop 14883 Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 -  e.  ( ( J  tX  J )  Cn  J )
 
Theoremmulcncntop 14884 Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   =>    |- 
 x.  e.  ( ( J  tX  J )  Cn  J )
 
Theoremdivcnap 14885* Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
 |-  J  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  K  =  ( Jt  { x  e.  CC  |  x #  0 } )   =>    |-  ( y  e.  CC ,  z  e.  { x  e.  CC  |  x #  0 }  |->  ( y  /  z ) )  e.  ( ( J  tX  K )  Cn  J )
 
Theoremmpomulcn 14886* Complex number multiplication is a continuous function. (Contributed by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y ) )  e.  ( ( J  tX  J )  Cn  J )
 
Theoremfsumcncntop 14887* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  K  =  ( MetOpen `  ( abs  o.  -  )
 )   &    |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
 
Theoremfsumcn 14888* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
 |-  K  =  ( TopOpen ` fld )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
 
Theoremexpcn 14889* The power function on complex numbers, for fixed exponent  N, is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) Avoid ax-mulf 8019. (Revised by GG, 16-Mar-2025.)
 |-  J  =  ( TopOpen ` fld )   =>    |-  ( N  e.  NN0  ->  ( x  e.  CC  |->  ( x ^ N ) )  e.  ( J  Cn  J ) )
 
9.2.7  Topological definitions using the reals
 
Syntaxccncf 14890 Extend class notation to include the operation which returns a class of continuous complex functions.
 class  -cn->
 
Definitiondf-cncf 14891* Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.)
 |- 
 -cn->  =  ( a  e. 
 ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
 )  |  A. x  e.  a  A. e  e.  RR+  E. d  e.  RR+  A. y  e.  a  ( ( abs `  ( x  -  y ) )  <  d  ->  ( abs `  ( ( f `
  x )  -  ( f `  y
 ) ) )  < 
 e ) } )
 
Theoremcncfval 14892* The value of the continuous complex function operation is the set of continuous functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  <  z  ->  ( abs `  ( ( f `
  x )  -  ( f `  w ) ) )  < 
 y ) } )
 
Theoremelcncf 14893* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w ) )  <  z  ->  ( abs `  ( ( F `
  x )  -  ( F `  w ) ) )  <  y
 ) ) ) )
 
Theoremelcncf2 14894* Version of elcncf 14893 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A
 --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  <  z  ->  ( abs `  ( ( F `
  w )  -  ( F `  x ) ) )  <  y
 ) ) ) )
 
Theoremcncfrss 14895 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
 
Theoremcncfrss2 14896 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
 
Theoremcncff 14897 A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( F  e.  ( A -cn-> B )  ->  F : A --> B )
 
Theoremcncfi 14898* Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( F  e.  ( A -cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  <  z  ->  ( abs `  ( ( F `  w )  -  ( F `  C ) ) )  <  R ) )
 
Theoremelcncf1di 14899* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ ) )   &    |-  ( ph  ->  ( ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  ( ( abs `  ( x  -  w ) )  <  Z  ->  ( abs `  ( ( F `
  x )  -  ( F `  w ) ) )  <  y
 ) ) )   =>    |-  ( ph  ->  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A
 -cn-> B ) ) )
 
Theoremelcncf1ii 14900* Membership in the set of continuous complex functions from  A to  B. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  F : A --> B   &    |-  (
 ( x  e.  A  /\  y  e.  RR+ )  ->  Z  e.  RR+ )   &    |-  (
 ( ( x  e.  A  /\  w  e.  A )  /\  y  e.  RR+ )  ->  (
 ( abs `  ( x  -  w ) )  <  Z  ->  ( abs `  (
 ( F `  x )  -  ( F `  w ) ) )  <  y ) )   =>    |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  F  e.  ( A -cn-> B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >