Theorem List for Intuitionistic Logic Explorer - 14801-14900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | txvalex 14801 |
Existence of the binary topological product. If and are
known to be topologies, see txtop 14807. (Contributed by Jim Kingdon,
3-Aug-2023.)
|
    
  |
| |
| Theorem | txval 14802* |
Value of the binary topological product operation. (Contributed by Jeff
Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
|


       
      |
| |
| Theorem | txuni2 14803* |
The underlying set of the product of two topologies. (Contributed by
Mario Carneiro, 31-Aug-2015.)
|


  
   
  |
| |
| Theorem | txbasex 14804* |
The basis for the product topology is a set. (Contributed by Mario
Carneiro, 2-Sep-2015.)
|


        |
| |
| Theorem | txbas 14805* |
The set of Cartesian products of elements from two topological bases is
a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 31-Aug-2015.)
|


     
  |
| |
| Theorem | eltx 14806* |
A set in a product is open iff each point is surrounded by an open
rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
|
    
 



  

    |
| |
| Theorem | txtop 14807 |
The product of two topologies is a topology. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
    
  |
| |
| Theorem | txtopi 14808 |
The product of two topologies is a topology. (Contributed by Jeff
Madsen, 15-Jun-2010.)
|
 
 |
| |
| Theorem | txtopon 14809 |
The underlying set of the product of two topologies. (Contributed by
Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro,
2-Sep-2015.)
|
  TopOn 
TopOn  
  TopOn      |
| |
| Theorem | txuni 14810 |
The underlying set of the product of two topologies. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
      
     |
| |
| Theorem | txunii 14811 |
The underlying set of the product of two topologies. (Contributed by
Jeff Madsen, 15-Jun-2010.)
|
   
    |
| |
| Theorem | txopn 14812 |
The product of two open sets is open in the product topology.
(Contributed by Jeff Madsen, 2-Sep-2009.)
|
    
 
      |
| |
| Theorem | txss12 14813 |
Subset property of the topological product. (Contributed by Mario
Carneiro, 2-Sep-2015.)
|
       
     |
| |
| Theorem | txbasval 14814 |
It is sufficient to consider products of the bases for the topologies in
the topological product. (Contributed by Mario Carneiro,
25-Aug-2014.)
|
       
         |
| |
| Theorem | neitx 14815 |
The Cartesian product of two neighborhoods is a neighborhood in the
product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
|
    
                     
         
    |
| |
| Theorem | tx1cn 14816 |
Continuity of the first projection map of a topological product.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 22-Aug-2015.)
|
  TopOn 
TopOn  
   
      |
| |
| Theorem | tx2cn 14817 |
Continuity of the second projection map of a topological product.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 22-Aug-2015.)
|
  TopOn 
TopOn  
   
      |
| |
| Theorem | txcnp 14818* |
If two functions are continuous at , then the ordered pair of them
is continuous at into the product topology. (Contributed by Mario
Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
 TopOn    TopOn    TopOn               
          
              |
| |
| Theorem | upxp 14819* |
Universal property of the Cartesian product considered as a categorical
product in the category of sets. (Contributed by Jeff Madsen,
2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
                                   |
| |
| Theorem | txcnmpt 14820* |
A map into the product of two topological spaces is continuous if both
of its projections are continuous. (Contributed by Jeff Madsen,
2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
       
         

 

     |
| |
| Theorem | uptx 14821* |
Universal property of the binary topological product. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro,
22-Aug-2015.)
|
       
    
          
     |
| |
| Theorem | txcn 14822 |
A map into the product of two topological spaces is continuous iff both
of its projections are continuous. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
|
   
  
                    
      |
| |
| Theorem | txrest 14823 |
The subspace of a topological product space induced by a subset with a
Cartesian product representation is a topological product of the
subspaces induced by the subspaces of the terms of the products.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 2-Sep-2015.)
|
    
 
   ↾t      ↾t 
 ↾t     |
| |
| Theorem | txdis 14824 |
The topological product of discrete spaces is discrete. (Contributed by
Mario Carneiro, 14-Aug-2015.)
|
            |
| |
| Theorem | txdis1cn 14825* |
A function is jointly continuous on a discrete left topology iff it is
continuous as a function of its right argument, for each fixed left
value. (Contributed by Mario Carneiro, 19-Sep-2015.)
|
   TopOn                     
       |
| |
| Theorem | txlm 14826* |
Two sequences converge iff the sequence of their ordered pairs
converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by
NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
|
       TopOn    TopOn              
             
                      
         |
| |
| Theorem | lmcn2 14827* |
The image of a convergent sequence under a continuous map is convergent
to the image of the original point. Binary operation version.
(Contributed by Mario Carneiro, 15-May-2014.)
|
       TopOn    TopOn               
                                                   |
| |
| 9.1.9 Continuous function-builders
|
| |
| Theorem | cnmptid 14828* |
The identity function is continuous. (Contributed by Mario Carneiro,
5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
 TopOn    
     |
| |
| Theorem | cnmptc 14829* |
A constant function is continuous. (Contributed by Mario Carneiro,
5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
 TopOn    TopOn      
     |
| |
| Theorem | cnmpt11 14830* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    
     TopOn         
  
     |
| |
| Theorem | cnmpt11f 14831* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    
        
          |
| |
| Theorem | cnmpt1t 14832* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    
           
          |
| |
| Theorem | cnmpt12f 14833* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    
                           |
| |
| Theorem | cnmpt12 14834* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    
           TopOn    TopOn     
       
   
     |
| |
| Theorem | cnmpt1st 14835* |
The projection onto the first coordinate is continuous. (Contributed by
Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

       |
| |
| Theorem | cnmpt2nd 14836* |
The projection onto the second coordinate is continuous. (Contributed
by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

       |
| |
| Theorem | cnmpt2c 14837* |
A constant function is continuous. (Contributed by Mario Carneiro,
5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
 TopOn    TopOn    TopOn      

       |
| |
| Theorem | cnmpt21 14838* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

       TopOn         
  

       |
| |
| Theorem | cnmpt21f 14839* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

          
         
   |
| |
| Theorem | cnmpt2t 14840* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

            
   

            |
| |
| Theorem | cnmpt22 14841* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

            
   TopOn    TopOn     
       
   

       |
| |
| Theorem | cnmpt22f 14842* |
The composition of continuous functions is continuous. (Contributed by
Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
 TopOn    TopOn    

            
          
           |
| |
| Theorem | cnmpt1res 14843* |
The restriction of a continuous function to a subset is continuous.
(Contributed by Mario Carneiro, 5-Jun-2014.)
|
 ↾t   TopOn            
     |
| |
| Theorem | cnmpt2res 14844* |
The restriction of a continuous function to a subset is continuous.
(Contributed by Mario Carneiro, 6-Jun-2014.)
|
 ↾t   TopOn     
↾t   TopOn           
   

       |
| |
| Theorem | cnmptcom 14845* |
The argument converse of a continuous function is continuous.
(Contributed by Mario Carneiro, 6-Jun-2014.)
|
 TopOn    TopOn    

        
       |
| |
| Theorem | imasnopn 14846 |
If a relation graph is open, then an image set of a singleton is also
open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26.
(Contributed by Thierry Arnoux, 14-Jan-2018.)
|
       
 
        |
| |
| 9.1.10 Homeomorphisms
|
| |
| Syntax | chmeo 14847 |
Extend class notation with the class of all homeomorphisms.
|
 |
| |
| Definition | df-hmeo 14848* |
Function returning all the homeomorphisms from topology to
topology .
(Contributed by FL, 14-Feb-2007.)
|
   
 

    |
| |
| Theorem | hmeofn 14849 |
The set of homeomorphisms is a function on topologies. (Contributed by
Mario Carneiro, 23-Aug-2015.)
|
   |
| |
| Theorem | hmeofvalg 14850* |
The set of all the homeomorphisms between two topologies. (Contributed
by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
         
      |
| |
| Theorem | ishmeo 14851 |
The predicate F is a homeomorphism between topology and topology
. Proposition
of [BourbakiTop1] p. I.2. (Contributed
by FL,
14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
      
 
     |
| |
| Theorem | hmeocn 14852 |
A homeomorphism is continuous. (Contributed by Mario Carneiro,
22-Aug-2015.)
|
    
    |
| |
| Theorem | hmeocnvcn 14853 |
The converse of a homeomorphism is continuous. (Contributed by Mario
Carneiro, 22-Aug-2015.)
|
     
    |
| |
| Theorem | hmeocnv 14854 |
The converse of a homeomorphism is a homeomorphism. (Contributed by FL,
5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
     
      |
| |
| Theorem | hmeof1o2 14855 |
A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro,
22-Aug-2015.)
|
  TopOn 
TopOn             |
| |
| Theorem | hmeof1o 14856 |
A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.)
(Revised by Mario Carneiro, 30-May-2014.)
|
             |
| |
| Theorem | hmeoima 14857 |
The image of an open set by a homeomorphism is an open set. (Contributed
by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
     
    
  |
| |
| Theorem | hmeoopn 14858 |
Homeomorphisms preserve openness. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
        
       |
| |
| Theorem | hmeocld 14859 |
Homeomorphisms preserve closedness. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
        
       
       |
| |
| Theorem | hmeontr 14860 |
Homeomorphisms preserve interiors. (Contributed by Mario Carneiro,
25-Aug-2015.)
|
                                  |
| |
| Theorem | hmeoimaf1o 14861* |
The function mapping open sets to their images under a homeomorphism is
a bijection of topologies. (Contributed by Mario Carneiro,
10-Sep-2015.)
|
      
          |
| |
| Theorem | hmeores 14862 |
The restriction of a homeomorphism is a homeomorphism. (Contributed by
Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro,
22-Aug-2015.)
|
        
   ↾t     ↾t         |
| |
| Theorem | hmeoco 14863 |
The composite of two homeomorphisms is a homeomorphism. (Contributed by
FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
|
     
     

      |
| |
| Theorem | idhmeo 14864 |
The identity function is a homeomorphism. (Contributed by FL,
14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
|
 TopOn         |
| |
| Theorem | hmeocnvb 14865 |
The converse of a homeomorphism is a homeomorphism. (Contributed by FL,
5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
  
   
       |
| |
| Theorem | txhmeo 14866* |
Lift a pair of homeomorphisms on the factors to a homeomorphism of
product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
|
               

                      |
| |
| Theorem | txswaphmeolem 14867* |
Show inverse for the "swap components" operation on a Cartesian
product.
(Contributed by Mario Carneiro, 21-Mar-2015.)
|
             
    |
| |
| Theorem | txswaphmeo 14868* |
There is a homeomorphism from to . (Contributed
by Mario Carneiro, 21-Mar-2015.)
|
  TopOn 
TopOn  
       
        |
| |
| 9.2 Metric spaces
|
| |
| 9.2.1 Pseudometric spaces
|
| |
| Theorem | psmetrel 14869 |
The class of pseudometrics is a relation. (Contributed by Jim Kingdon,
24-Apr-2023.)
|
PsMet |
| |
| Theorem | ispsmet 14870* |
Express the predicate " is a pseudometric". (Contributed by
Thierry Arnoux, 7-Feb-2018.)
|
  PsMet        
                              |
| |
| Theorem | psmetdmdm 14871 |
Recover the base set from a pseudometric. (Contributed by Thierry
Arnoux, 7-Feb-2018.)
|
 PsMet 
  |
| |
| Theorem | psmetf 14872 |
The distance function of a pseudometric as a function. (Contributed by
Thierry Arnoux, 7-Feb-2018.)
|
 PsMet          |
| |
| Theorem | psmetcl 14873 |
Closure of the distance function of a pseudometric space. (Contributed
by Thierry Arnoux, 7-Feb-2018.)
|
  PsMet 
    
  |
| |
| Theorem | psmet0 14874 |
The distance function of a pseudometric space is zero if its arguments
are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
|
  PsMet 
    
  |
| |
| Theorem | psmettri2 14875 |
Triangle inequality for the distance function of a pseudometric.
(Contributed by Thierry Arnoux, 11-Feb-2018.)
|
  PsMet  
 
                   |
| |
| Theorem | psmetsym 14876 |
The distance function of a pseudometric is symmetrical. (Contributed by
Thierry Arnoux, 7-Feb-2018.)
|
  PsMet 
    
      |
| |
| Theorem | psmettri 14877 |
Triangle inequality for the distance function of a pseudometric space.
(Contributed by Thierry Arnoux, 11-Feb-2018.)
|
  PsMet  
 
                   |
| |
| Theorem | psmetge0 14878 |
The distance function of a pseudometric space is nonnegative.
(Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon,
19-Apr-2023.)
|
  PsMet 

      |
| |
| Theorem | psmetxrge0 14879 |
The distance function of a pseudometric space is a function into the
nonnegative extended real numbers. (Contributed by Thierry Arnoux,
24-Feb-2018.)
|
 PsMet             |
| |
| Theorem | psmetres2 14880 |
Restriction of a pseudometric. (Contributed by Thierry Arnoux,
11-Feb-2018.)
|
  PsMet   
   PsMet    |
| |
| Theorem | psmetlecl 14881 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
|
  PsMet  
     
 
      |
| |
| Theorem | distspace 14882 |
A set together with a
(distance) function
which is a
pseudometric is a distance space (according to E. Deza, M.M. Deza:
"Dictionary of Distances", Elsevier, 2006), i.e. a (base) set
equipped with a distance , which is a mapping of two elements of
the base set to the (extended) reals and which is nonnegative, symmetric
and equal to 0 if the two elements are equal. (Contributed by AV,
15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
|
  PsMet 
        
             
        |
| |
| 9.2.2 Basic metric space
properties
|
| |
| Syntax | cxms 14883 |
Extend class notation with the class of extended metric spaces.
|
  |
| |
| Syntax | cms 14884 |
Extend class notation with the class of metric spaces.
|
 |
| |
| Syntax | ctms 14885 |
Extend class notation with the function mapping a metric to the metric
space it defines.
|
toMetSp |
| |
| Definition | df-xms 14886 |
Define the (proper) class of extended metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
     
                      |
| |
| Definition | df-ms 14887 |
Define the (proper) class of metric spaces. (Contributed by NM,
27-Aug-2006.)
|
 
         
                |
| |
| Definition | df-tms 14888 |
Define the function mapping a metric to the metric space which it defines.
(Contributed by Mario Carneiro, 2-Sep-2015.)
|
toMetSp                      sSet
 TopSet  
        |
| |
| Theorem | metrel 14889 |
The class of metrics is a relation. (Contributed by Jim Kingdon,
20-Apr-2023.)
|
 |
| |
| Theorem | xmetrel 14890 |
The class of extended metrics is a relation. (Contributed by Jim
Kingdon, 20-Apr-2023.)
|
  |
| |
| Theorem | ismet 14891* |
Express the predicate " is a metric". (Contributed by NM,
25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
                    

                    |
| |
| Theorem | isxmet 14892* |
Express the predicate " is an extended metric". (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
              
      

                       |
| |
| Theorem | ismeti 14893* |
Properties that determine a metric. (Contributed by NM, 17-Nov-2006.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
       
     
                         |
| |
| Theorem | isxmetd 14894* |
Properties that determine an extended metric. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
           
            
 
                          |
| |
| Theorem | isxmet2d 14895* |
It is safe to only require the triangle inequality when the values are
real (so that we can use the standard addition over the reals), but in
this case the nonnegativity constraint cannot be deduced and must be
provided separately. (Counterexample:
        
satisfies all hypotheses
except nonnegativity.) (Contributed by Mario Carneiro,
20-Aug-2015.)
|
           
  
       
 
         
     
                             |
| |
| Theorem | metflem 14896* |
Lemma for metf 14898 and others. (Contributed by NM,
30-Aug-2006.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
             
                          |
| |
| Theorem | xmetf 14897 |
Mapping of the distance function of an extended metric. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
              |
| |
| Theorem | metf 14898 |
Mapping of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.)
|
             |
| |
| Theorem | xmetcl 14899 |
Closure of the distance function of a metric space. Part of Property M1
of [Kreyszig] p. 3. (Contributed by
NM, 30-Aug-2006.)
|
           
  |
| |
| Theorem | metcl 14900 |
Closure of the distance function of a metric space. Part of Property M1
of [Kreyszig] p. 3. (Contributed by
NM, 30-Aug-2006.)
|
     
    
  |