Theorem List for Intuitionistic Logic Explorer - 14801-14900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | xmetunirn 14801 |
Two ways to express an extended metric on an unspecified base.
(Contributed by Mario Carneiro, 13-Oct-2015.)
|
  
       |
| |
| Theorem | xmeteq0 14802 |
The value of an extended metric is zero iff its arguments are equal.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
            
   |
| |
| Theorem | meteq0 14803 |
The value of a metric is zero iff its arguments are equal. Property M2
of [Kreyszig] p. 4. (Contributed by
NM, 30-Aug-2006.)
|
     
     
   |
| |
| Theorem | xmettri2 14804 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
         
                   |
| |
| Theorem | mettri2 14805 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
20-Aug-2015.)
|
      
 
        
       |
| |
| Theorem | xmet0 14806 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
           
  |
| |
| Theorem | met0 14807 |
The distance function of a metric space is zero if its arguments are
equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM,
30-Aug-2006.)
|
          
  |
| |
| Theorem | xmetge0 14808 |
The distance function of a metric space is nonnegative. (Contributed by
Mario Carneiro, 20-Aug-2015.)
|
       
      |
| |
| Theorem | metge0 14809 |
The distance function of a metric space is nonnegative. (Contributed by
NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
     

      |
| |
| Theorem | xmetlecl 14810 |
Real closure of an extended metric value that is upper bounded by a
real. (Contributed by Mario Carneiro, 20-Aug-2015.)
|
             
 
      |
| |
| Theorem | xmetsym 14811 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
           
      |
| |
| Theorem | xmetpsmet 14812 |
An extended metric is a pseudometric. (Contributed by Thierry Arnoux,
7-Feb-2018.)
|
      PsMet    |
| |
| Theorem | xmettpos 14813 |
The distance function of an extended metric space is symmetric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
      tpos   |
| |
| Theorem | metsym 14814 |
The distance function of a metric space is symmetric. Definition
14-1.1(c) of [Gleason] p. 223.
(Contributed by NM, 27-Aug-2006.)
(Revised by Mario Carneiro, 20-Aug-2015.)
|
     
    
      |
| |
| Theorem | xmettri 14815 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 20-Aug-2015.)
|
         
                   |
| |
| Theorem | mettri 14816 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by NM,
27-Aug-2006.)
|
      
 
        
       |
| |
| Theorem | xmettri3 14817 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 20-Aug-2015.)
|
         
                   |
| |
| Theorem | mettri3 14818 |
Triangle inequality for the distance function of a metric space.
(Contributed by NM, 13-Mar-2007.)
|
      
 
        
       |
| |
| Theorem | xmetrtri 14819 |
One half of the reverse triangle inequality for the distance function of
an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
|
         
             
      |
| |
| Theorem | metrtri 14820 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
21-Apr-2023.)
|
      
 
       
     
      |
| |
| Theorem | metn0 14821 |
A metric space is nonempty iff its base set is nonempty. (Contributed
by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
|
     
   |
| |
| Theorem | xmetres2 14822 |
Restriction of an extended metric. (Contributed by Mario Carneiro,
20-Aug-2015.)
|
                   |
| |
| Theorem | metreslem 14823 |
Lemma for metres 14826. (Contributed by Mario Carneiro,
24-Aug-2015.)
|
 
               |
| |
| Theorem | metres2 14824 |
Lemma for metres 14826. (Contributed by FL, 12-Oct-2006.) (Proof
shortened by Mario Carneiro, 14-Aug-2015.)
|
     
           |
| |
| Theorem | xmetres 14825 |
A restriction of an extended metric is an extended metric. (Contributed
by Mario Carneiro, 24-Aug-2015.)
|
                   |
| |
| Theorem | metres 14826 |
A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.)
(Revised by Mario Carneiro, 14-Aug-2015.)
|
     
           |
| |
| Theorem | 0met 14827 |
The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario
Carneiro, 14-Aug-2015.)
|
     |
| |
| 9.2.3 Metric space balls
|
| |
| Theorem | blfvalps 14828* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Feb-2018.)
|
 PsMet       
         |
| |
| Theorem | blfval 14829* |
The value of the ball function. (Contributed by NM, 30-Aug-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry
Arnoux, 11-Feb-2018.)
|
           
         |
| |
| Theorem | blex 14830 |
A ball is a set. Also see blfn 14284 in case you just know is a set,
not      . (Contributed by Jim Kingdon,
4-May-2023.)
|
            |
| |
| Theorem | blvalps 14831* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
         
       |
| |
| Theorem | blval 14832* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
                        |
| |
| Theorem | elblps 14833 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
 
            
    |
| |
| Theorem | elbl 14834 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.)
|
                     
    |
| |
| Theorem | elbl2ps 14835 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
            
   |
| |
| Theorem | elbl2 14836 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.)
|
         
 
                |
| |
| Theorem | elbl3ps 14837 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
   PsMet     
            
   |
| |
| Theorem | elbl3 14838 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
         
 
                |
| |
| Theorem | blcomps 14839 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
        
           |
| |
| Theorem | blcom 14840 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.)
|
         
 
        
           |
| |
| Theorem | xblpnfps 14841 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
             
    |
| |
| Theorem | xblpnf 14842 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
                    
    |
| |
| Theorem | blpnf 14843 |
The infinity ball in a standard metric is just the whole space.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                |
| |
| Theorem | bldisj 14844 |
Two balls are disjoint if the center-to-center distance is more than the
sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
|
        

    
     
                    |
| |
| Theorem | blgt0 14845 |
A nonempty ball implies that the radius is positive. (Contributed by
NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                 
  |
| |
| Theorem | bl2in 14846 |
Two balls are disjoint if they don't overlap. (Contributed by NM,
11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                
                    |
| |
| Theorem | xblss2ps 14847 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14850 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
 PsMet                     
                          |
| |
| Theorem | xblss2 14848 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14850 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                         
                          |
| |
| Theorem | blss2ps 14849 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet                              |
| |
| Theorem | blss2 14850 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
        
     
                     |
| |
| Theorem | blhalf 14851 |
A ball of radius is contained in a ball of radius centered
at any point inside the smaller ball. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
|
         
                                |
| |
| Theorem | blfps 14852 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet               |
| |
| Theorem | blf 14853 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.)
|
                   |
| |
| Theorem | blrnps 14854* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet  
     
           |
| |
| Theorem | blrn 14855* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
            
           |
| |
| Theorem | xblcntrps 14856 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

 
          |
| |
| Theorem | xblcntr 14857 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
         
          |
| |
| Theorem | blcntrps 14858 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

          |
| |
| Theorem | blcntr 14859 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | xblm 14860* |
A ball is inhabited iff the radius is positive. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
                     |
| |
| Theorem | bln0 14861 |
A ball is not empty. It is also inhabited, as seen at blcntr 14859.
(Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                  |
| |
| Theorem | blelrnps 14862 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
               |
| |
| Theorem | blelrn 14863 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
               
      |
| |
| Theorem | blssm 14864 |
A ball is a subset of the base set of a metric space. (Contributed by
NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | unirnblps 14865 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet         |
| |
| Theorem | unirnbl 14866 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | blininf 14867 |
The intersection of two balls with the same center is the smaller of
them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
                          inf  
      |
| |
| Theorem | ssblps 14868 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet    
                   |
| |
| Theorem | ssbl 14869 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.)
|
         
                    |
| |
| Theorem | blssps 14870* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
             
  |
| |
| Theorem | blss 14871* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.)
|
                       |
| |
| Theorem | blssexps 14872* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
                      |
| |
| Theorem | blssex 14873* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                             |
| |
| Theorem | ssblex 14874* |
A nested ball exists whose radius is less than any desired amount.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
  
                    |
| |
| Theorem | blin2 14875* |
Given any two balls and a point in their intersection, there is a ball
contained in the intersection with the given center point. (Contributed
by Mario Carneiro, 12-Nov-2013.)
|
          

          
       
    |
| |
| Theorem | blbas 14876 |
The balls of a metric space form a basis for a topology. (Contributed
by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
|
         
  |
| |
| Theorem | blres 14877 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
            
                     |
| |
| Theorem | xmeterval 14878 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
     
     
    
    |
| |
| Theorem | xmeter 14879 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
     
       |
| |
| Theorem | xmetec 14880 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
                        |
| |
| Theorem | blssec 14881 |
A ball centered at is
contained in the set of points finitely
separated from . This is just an application of ssbl 14869
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
           
            |
| |
| Theorem | blpnfctr 14882 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
                               |
| |
| Theorem | xmetresbl 14883 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 14880, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
                          |
| |
| 9.2.4 Open sets of a metric space
|
| |
| Theorem | mopnrel 14884 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
 |
| |
| Theorem | mopnval 14885 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
    is the family of all open sets in the metric space
determined by the metric . By mopntop 14887, the open sets of a
metric space form a topology , whose base set is  by
mopnuni 14888. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
                    |
| |
| Theorem | mopntopon 14886 |
The set of open sets of a metric space is a topology on .
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
          TopOn    |
| |
| Theorem | mopntop 14887 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | mopnuni 14888 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | elmopn 14889* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
           |
| |
| Theorem | mopnfss 14890 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
         
   |
| |
| Theorem | mopnm 14891 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | elmopn2 14892* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
            |
| |
| Theorem | mopnss 14893 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
              |
| |
| Theorem | isxms 14894 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                          |
| |
| Theorem | isxms2 14895 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                               |
| |
| Theorem | isms 14896 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                          |
| |
| Theorem | isms2 14897 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                             |
| |
| Theorem | xmstopn 14898 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
                        |
| |
| Theorem | mstopn 14899 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
                       |
| |
| Theorem | xmstps 14900 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
    |