Theorem List for Intuitionistic Logic Explorer - 14801-14900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | blex 14801 |
A ball is a set. Also see blfn 14255 in case you just know is a set,
not      . (Contributed by Jim Kingdon,
4-May-2023.)
|
            |
| |
| Theorem | blvalps 14802* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
         
       |
| |
| Theorem | blval 14803* |
The ball around a point is the set of all points whose distance
from is less
than the ball's radius . (Contributed by NM,
31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
|
                        |
| |
| Theorem | elblps 14804 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
 
            
    |
| |
| Theorem | elbl 14805 |
Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by
Mario Carneiro, 11-Nov-2013.)
|
                     
    |
| |
| Theorem | elbl2ps 14806 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
            
   |
| |
| Theorem | elbl2 14807 |
Membership in a ball. (Contributed by NM, 9-Mar-2007.)
|
         
 
                |
| |
| Theorem | elbl3ps 14808 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
   PsMet     
            
   |
| |
| Theorem | elbl3 14809 |
Membership in a ball, with reversed distance function arguments.
(Contributed by NM, 10-Nov-2007.)
|
         
 
                |
| |
| Theorem | blcomps 14810 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet     
        
           |
| |
| Theorem | blcom 14811 |
Commute the arguments to the ball function. (Contributed by Mario
Carneiro, 22-Jan-2014.)
|
         
 
        
           |
| |
| Theorem | xblpnfps 14812 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
             
    |
| |
| Theorem | xblpnf 14813 |
The infinity ball in an extended metric is the set of all points that
are a finite distance from the center. (Contributed by Mario Carneiro,
23-Aug-2015.)
|
                    
    |
| |
| Theorem | blpnf 14814 |
The infinity ball in a standard metric is just the whole space.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                |
| |
| Theorem | bldisj 14815 |
Two balls are disjoint if the center-to-center distance is more than the
sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
|
        

    
     
                    |
| |
| Theorem | blgt0 14816 |
A nonempty ball implies that the radius is positive. (Contributed by
NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                 
  |
| |
| Theorem | bl2in 14817 |
Two balls are disjoint if they don't overlap. (Contributed by NM,
11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
                
                    |
| |
| Theorem | xblss2ps 14818 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14821 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
 PsMet                     
                          |
| |
| Theorem | xblss2 14819 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14821 for
extended metrics, we have to assume the balls are a finite distance
apart, or else will not even be in the infinity ball around
.
(Contributed by Mario Carneiro, 23-Aug-2015.)
|
                         
                          |
| |
| Theorem | blss2ps 14820 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
   PsMet                              |
| |
| Theorem | blss2 14821 |
One ball is contained in another if the center-to-center distance is
less than the difference of the radii. (Contributed by Mario Carneiro,
15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
|
        
     
                     |
| |
| Theorem | blhalf 14822 |
A ball of radius is contained in a ball of radius centered
at any point inside the smaller ball. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
|
         
                                |
| |
| Theorem | blfps 14823 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet               |
| |
| Theorem | blf 14824 |
Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario
Carneiro, 23-Aug-2015.)
|
                   |
| |
| Theorem | blrnps 14825* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet  
     
           |
| |
| Theorem | blrn 14826* |
Membership in the range of the ball function. Note that
    is the
collection of all balls for metric .
(Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
            
           |
| |
| Theorem | xblcntrps 14827 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

 
          |
| |
| Theorem | xblcntr 14828 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
         
          |
| |
| Theorem | blcntrps 14829 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 

          |
| |
| Theorem | blcntr 14830 |
A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised
by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | xblm 14831* |
A ball is inhabited iff the radius is positive. (Contributed by Mario
Carneiro, 23-Aug-2015.)
|
                     |
| |
| Theorem | bln0 14832 |
A ball is not empty. It is also inhabited, as seen at blcntr 14830.
(Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                  |
| |
| Theorem | blelrnps 14833 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
               |
| |
| Theorem | blelrn 14834 |
A ball belongs to the set of balls of a metric space. (Contributed by
NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
               
      |
| |
| Theorem | blssm 14835 |
A ball is a subset of the base set of a metric space. (Contributed by
NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                  |
| |
| Theorem | unirnblps 14836 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
 PsMet         |
| |
| Theorem | unirnbl 14837 |
The union of the set of balls of a metric space is its base set.
(Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | blininf 14838 |
The intersection of two balls with the same center is the smaller of
them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
                          inf  
      |
| |
| Theorem | ssblps 14839 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
|
   PsMet    
                   |
| |
| Theorem | ssbl 14840 |
The size of a ball increases monotonically with its radius.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
24-Aug-2015.)
|
         
                    |
| |
| Theorem | blssps 14841* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux,
11-Mar-2018.)
|
  PsMet 
             
  |
| |
| Theorem | blss 14842* |
Any point in a ball
can be centered in
another ball that is
a subset of .
(Contributed by NM, 31-Aug-2006.) (Revised by
Mario Carneiro, 24-Aug-2015.)
|
                       |
| |
| Theorem | blssexps 14843* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by
Thierry Arnoux, 11-Mar-2018.)
|
  PsMet 
                      |
| |
| Theorem | blssex 14844* |
Two ways to express the existence of a ball subset. (Contributed by NM,
5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
                             |
| |
| Theorem | ssblex 14845* |
A nested ball exists whose radius is less than any desired amount.
(Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
         
  
                    |
| |
| Theorem | blin2 14846* |
Given any two balls and a point in their intersection, there is a ball
contained in the intersection with the given center point. (Contributed
by Mario Carneiro, 12-Nov-2013.)
|
          

          
       
    |
| |
| Theorem | blbas 14847 |
The balls of a metric space form a basis for a topology. (Contributed
by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
|
         
  |
| |
| Theorem | blres 14848 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
            
                     |
| |
| Theorem | xmeterval 14849 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
     
     
    
    |
| |
| Theorem | xmeter 14850 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
     
       |
| |
| Theorem | xmetec 14851 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
                        |
| |
| Theorem | blssec 14852 |
A ball centered at is
contained in the set of points finitely
separated from . This is just an application of ssbl 14840
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
           
            |
| |
| Theorem | blpnfctr 14853 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
                               |
| |
| Theorem | xmetresbl 14854 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 14851, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
                          |
| |
| 9.2.4 Open sets of a metric space
|
| |
| Theorem | mopnrel 14855 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
 |
| |
| Theorem | mopnval 14856 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
    is the family of all open sets in the metric space
determined by the metric . By mopntop 14858, the open sets of a
metric space form a topology , whose base set is  by
mopnuni 14859. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
                    |
| |
| Theorem | mopntopon 14857 |
The set of open sets of a metric space is a topology on .
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
          TopOn    |
| |
| Theorem | mopntop 14858 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | mopnuni 14859 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
             |
| |
| Theorem | elmopn 14860* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
           |
| |
| Theorem | mopnfss 14861 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
         
   |
| |
| Theorem | mopnm 14862 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
            |
| |
| Theorem | elmopn2 14863* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
           
 
            |
| |
| Theorem | mopnss 14864 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
              |
| |
| Theorem | isxms 14865 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                          |
| |
| Theorem | isxms2 14866 |
Express the predicate "   is an extended metric space"
with underlying set and distance function . (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
                               |
| |
| Theorem | isms 14867 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                          |
| |
| Theorem | isms2 14868 |
Express the predicate "   is a metric space" with
underlying set
and distance function . (Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
                             |
| |
| Theorem | xmstopn 14869 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
                        |
| |
| Theorem | mstopn 14870 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
                       |
| |
| Theorem | xmstps 14871 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
    |
| |
| Theorem | msxms 14872 |
A metric space is an extended metric space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|

   |
| |
| Theorem | mstps 14873 |
A metric space is a topological space. (Contributed by Mario Carneiro,
26-Aug-2015.)
|

  |
| |
| Theorem | xmsxmet 14874 |
The distance function, suitably truncated, is an extended metric on
. (Contributed
by Mario Carneiro, 2-Sep-2015.)
|
                     |
| |
| Theorem | msmet 14875 |
The distance function, suitably truncated, is a metric on .
(Contributed by Mario Carneiro, 12-Nov-2013.)
|
            
      |
| |
| Theorem | msf 14876 |
The distance function of a metric space is a function into the real
numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                     |
| |
| Theorem | xmsxmet2 14877 |
The distance function, suitably truncated, is an extended metric on
. (Contributed
by Mario Carneiro, 2-Oct-2015.)
|
                     |
| |
| Theorem | msmet2 14878 |
The distance function, suitably truncated, is a metric on .
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
                   |
| |
| Theorem | mscl 14879 |
Closure of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
         
    
  |
| |
| Theorem | xmscl 14880 |
Closure of the distance function of an extended metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
      |
| |
| Theorem | xmsge0 14881 |
The distance function in an extended metric space is nonnegative.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
           
      |
| |
| Theorem | xmseq0 14882 |
The distance between two points in an extended metric space is zero iff
the two points are identical. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
           
    
   |
| |
| Theorem | xmssym 14883 |
The distance function in an extended metric space is symmetric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
          |
| |
| Theorem | xmstri2 14884 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri2 14885 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | xmstri 14886 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri 14887 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | xmstri3 14888 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
           
 
                   |
| |
| Theorem | mstri3 14889 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
         
  
        
       |
| |
| Theorem | msrtri 14890 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
         
  
       
     
      |
| |
| Theorem | xmspropd 14891 |
Property deduction for an extended metric space. (Contributed by Mario
Carneiro, 4-Oct-2015.)
|
                    
             
            |
| |
| Theorem | mspropd 14892 |
Property deduction for a metric space. (Contributed by Mario Carneiro,
4-Oct-2015.)
|
                    
             
      
   |
| |
| Theorem | setsmsbasg 14893 |
The base set of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
                

sSet  TopSet  
       
              |
| |
| Theorem | setsmsdsg 14894 |
The distance function of a constructed metric space. (Contributed by
Mario Carneiro, 28-Aug-2015.)
|
                

sSet  TopSet  
       
                  |
| |
| Theorem | setsmstsetg 14895 |
The topology of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
|
                

sSet  TopSet  
       
            TopSet    |
| |
| Theorem | mopni 14896* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                  
   |
| |
| Theorem | mopni2 14897* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
                       |
| |
| Theorem | mopni3 14898* |
An open set of a metric space includes an arbitrarily small ball around
each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
            

         
   |
| |
| Theorem | blssopn 14899 |
The balls of a metric space are open sets. (Contributed by NM,
12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
                |
| |
| Theorem | unimopn 14900 |
The union of a collection of open sets of a metric space is open.
Theorem T2 of [Kreyszig] p. 19.
(Contributed by NM, 4-Sep-2006.)
(Revised by Mario Carneiro, 23-Dec-2013.)
|
               |