Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stdc Unicode version

Theorem bj-stdc 13651
Description: Decidability of a proposition is stable if and only if that proposition is decidable. In particular, the assumption that every formula is stable implies that every formula is decidable, hence classical logic. (Contributed by BJ, 9-Oct-2019.)
Assertion
Ref Expression
bj-stdc  |-  (STAB DECID  ph  <-> DECID  ph )

Proof of Theorem bj-stdc
StepHypRef Expression
1 nndc 841 . 2  |-  -.  -. DECID  ph
2 bj-nnbist 13635 . 2  |-  ( -. 
-. DECID  ph  ->  (STAB DECID  ph  <-> DECID  ph )
)
31, 2ax-mp 5 1  |-  (STAB DECID  ph  <-> DECID  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104  STAB wstab 820  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator