| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnan | Unicode version | ||
| Description: The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| bj-nnan | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . 4
 | |
| 2 | 1 | con3i 633 | 
. . 3
 | 
| 3 | 2 | con3i 633 | 
. 2
 | 
| 4 | simpr 110 | 
. . . 4
 | |
| 5 | 4 | con3i 633 | 
. . 3
 | 
| 6 | 5 | con3i 633 | 
. 2
 | 
| 7 | 3, 6 | jca 306 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: bj-stan 15393 bj-stand 15394 | 
| Copyright terms: Public domain | W3C validator |