| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnan | GIF version | ||
| Description: The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| bj-nnan | ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | 1 | con3i 633 | . . 3 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
| 3 | 2 | con3i 633 | . 2 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → ¬ ¬ 𝜑) |
| 4 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 5 | 4 | con3i 633 | . . 3 ⊢ (¬ 𝜓 → ¬ (𝜑 ∧ 𝜓)) |
| 6 | 5 | con3i 633 | . 2 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → ¬ ¬ 𝜓) |
| 7 | 3, 6 | jca 306 | 1 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: bj-stan 15403 bj-stand 15404 |
| Copyright terms: Public domain | W3C validator |