Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-nnan | GIF version |
Description: The double negation of a conjunction implies the conjunction of the double negations. (Contributed by BJ, 24-Nov-2023.) |
Ref | Expression |
---|---|
bj-nnan | ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | con3i 622 | . . 3 ⊢ (¬ 𝜑 → ¬ (𝜑 ∧ 𝜓)) |
3 | 2 | con3i 622 | . 2 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → ¬ ¬ 𝜑) |
4 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
5 | 4 | con3i 622 | . . 3 ⊢ (¬ 𝜓 → ¬ (𝜑 ∧ 𝜓)) |
6 | 5 | con3i 622 | . 2 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → ¬ ¬ 𝜓) |
7 | 3, 6 | jca 304 | 1 ⊢ (¬ ¬ (𝜑 ∧ 𝜓) → (¬ ¬ 𝜑 ∧ ¬ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem is referenced by: bj-stan 13628 bj-stand 13629 |
Copyright terms: Public domain | W3C validator |