HomeHome Intuitionistic Logic Explorer
Theorem List (p. 146 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14501-14600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxcmet 14501 Extend class notation with the class of all metrics.
 class  Met
 
Syntaxcbl 14502 Extend class notation with the metric space ball function.
 class  ball
 
Syntaxcfbas 14503 Extend class definition to include the class of filter bases.
 class  fBas
 
Syntaxcfg 14504 Extend class definition to include the filter generating function.
 class  filGen
 
Syntaxcmopn 14505 Extend class notation with a function mapping each metric space to the family of its open sets.
 class  MetOpen
 
Syntaxcmetu 14506 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
 class metUnif
 
Definitiondf-psmet 14507* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  ( (
 y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
 y d z ) 
 <_  ( ( w d y ) +e
 ( w d z ) ) ) }
 )
 
Definitiondf-xmet 14508* Define the set of all extended metrics on a given base set. The definition is similar to df-met 14509, but we also allow the metric to take on the value +oo. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 *Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <->  y  =  z
 )  /\  A. w  e.  x  ( y d z )  <_  (
 ( w d y ) +e ( w d z ) ) ) } )
 
Definitiondf-met 14509* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
 |- 
 Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x ) )  | 
 A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <-> 
 y  =  z ) 
 /\  A. w  e.  x  ( y d z )  <_  ( ( w d y )  +  ( w d z ) ) ) } )
 
Definitiondf-bl 14510* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- 
 ball  =  ( d  e.  _V  |->  ( x  e. 
 dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
 z } ) )
 
Definitiondf-mopn 14511 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
 |-  MetOpen  =  ( d  e. 
 U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
 
Definitiondf-fbas 14512* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |- 
 fBas  =  ( w  e.  _V  |->  { x  e.  ~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
 y  i^i  z )
 )  =/=  (/) ) }
 )
 
Definitiondf-fg 14513* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |-  filGen  =  ( w  e. 
 _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
 
Definitiondf-metu 14514* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- metUnif  =  ( d  e.  U. ran PsMet 
 |->  ( ( dom  dom  d  X.  dom  dom  d )
 filGen ran  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a
 ) ) ) ) )
 
Theoremblfn 14515 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |- 
 ball  Fn  _V
 
Theoremmopnset 14516 Getting a set by applying 
MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |-  ( D  e.  V  ->  ( MetOpen `  D )  e.  _V )
 
Theoremcndsex 14517 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( abs  o.  -  )  e.  _V
 
Theoremcntopex 14518 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  e. 
 _V
 
Theoremmetuex 14519 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
 
Syntaxccnfld 14520 Extend class notation with the field of complex numbers.
 classfld
 
Definitiondf-cnfld 14521* The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14523, cnfldadd 14526, cnfldmul 14528, cnfldcj 14529, cnfldtset 14530, cnfldle 14531, cnfldds 14532, and cnfldbas 14524. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

 |-fld  =  ( ( { <. (
 Base `  ndx ) ,  CC >. ,  <. ( +g  ` 
 ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. , 
 <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e. 
 CC  |->  ( x  x.  y ) ) >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
 ) >. ,  <. ( le ` 
 ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o. 
 -  ) >. }  u.  {
 <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
 -  ) ) >. } ) )
 
Theoremcnfldstr 14522 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld Struct  <. 1 , ; 1 3 >.
 
Theoremcnfldex 14523 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld  e.  _V
 
Theoremcnfldbas 14524 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 CC  =  ( Base ` fld )
 
Theoremmpocnfldadd 14525* The addition operation of the field of complex numbers. Version of cnfldadd 14526 using maps-to notation, which does not require ax-addf 8121. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
 ) )  =  (
 +g  ` fld )
 
Theoremcnfldadd 14526 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 +  =  ( +g  ` fld )
 
Theoremmpocnfldmul 14527* The multiplication operation of the field of complex numbers. Version of cnfldmul 14528 using maps-to notation, which does not require ax-mulf 8122. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  =  ( .r ` fld )
 
Theoremcnfldmul 14528 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 x.  =  ( .r
 ` fld
 )
 
Theoremcnfldcj 14529 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-  *  =  ( *r ` fld )
 
Theoremcnfldtset 14530 The topology component of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 31-Mar-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  =  (TopSet ` fld )
 
Theoremcnfldle 14531 The ordering of the field of complex numbers. Note that this is not actually an ordering on  CC, but we put it in the structure anyway because restricting to  RR does not affect this component, so that  (flds  RR ) is an ordered field even though ℂfld itself is not. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14521. (Revised by GG, 31-Mar-2025.)
 |- 
 <_  =  ( le ` fld )
 
Theoremcnfldds 14532 The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) Revise df-cnfld 14521. (Revised by GG, 31-Mar-2025.)
 |-  ( abs  o.  -  )  =  ( dist ` fld )
 
Theoremcncrng 14533 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-fld  e.  CRing
 
Theoremcnring 14534 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-fld  e.  Ring
 
Theoremcnfld0 14535 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  0  =  ( 0g
 ` fld
 )
 
Theoremcnfld1 14536 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  1  =  ( 1r
 ` fld
 )
 
Theoremcnfldneg 14537 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  ( X  e.  CC  ->  ( ( invg ` fld ) `  X )  =  -u X )
 
Theoremcnfldplusf 14538 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 +  =  ( +f ` fld )
 
Theoremcnfldsub 14539 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- 
 -  =  ( -g ` fld )
 
Theoremcnfldmulg 14540 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B ) )
 
Theoremcnfldexp 14541 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN0 )  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) )
 
Theoremcnsubmlem 14542* Lemma for nn0subm 14547 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  0  e.  A   =>    |-  A  e.  (SubMnd ` fld )
 
Theoremcnsubglem 14543* Lemma for cnsubrglem 14544 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  B  e.  A   =>    |-  A  e.  (SubGrp ` fld )
 
Theoremcnsubrglem 14544* Lemma for zsubrg 14545 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  1  e.  A   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y )  e.  A )   =>    |-  A  e.  (SubRing ` fld )
 
Theoremzsubrg 14545 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ  e.  (SubRing ` fld )
 
Theoremgzsubrg 14546 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ[_i]  e.  (SubRing ` fld )
 
Theoremnn0subm 14547 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |- 
 NN0  e.  (SubMnd ` fld )
 
Theoremrege0subm 14548 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
 
Theoremzsssubrg 14549 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( R  e.  (SubRing ` fld ) 
 ->  ZZ  C_  R )
 
Theoremgsumfzfsumlem0 14550* Lemma for gsumfzfsum 14552. The case where the sum is empty. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremgsumfzfsumlemm 14551* Lemma for gsumfzfsum 14552. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremgsumfzfsum 14552* Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )   =>    |-  ( ph  ->  (fld  gsumg  ( k  e.  ( M ... N )  |->  B ) )  =  sum_ k  e.  ( M ... N ) B )
 
Theoremcnfldui 14553 The invertible complex numbers are exactly those apart from zero. This is recapb 8818 but expressed in terms of ℂfld. (Contributed by Jim Kingdon, 11-Sep-2025.)
 |- 
 { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
 
7.7.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring  Z." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by  (flds  ZZ ), the field of complex numbers restricted to the integers. In zringring 14557 it is shown that this restriction is a ring, and zringbas 14560 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 14555 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 14555).

 
Syntaxczring 14554 Extend class notation with the (unital) ring of integers.
 classring
 
Definitiondf-zring 14555 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
 |-ring  =  (flds  ZZ )
 
Theoremzringcrng 14556 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  CRing
 
Theoremzringring 14557 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
 |-ring  e.  Ring
 
Theoremzringabl 14558 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  Abel
 
Theoremzringgrp 14559 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
 |-ring  e.  Grp
 
Theoremzringbas 14560 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 ZZ  =  ( Base ` ring )
 
Theoremzringplusg 14561 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 +  =  ( +g  ` ring )
 
Theoremzringmulg 14562 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A (.g ` ring ) B )  =  ( A  x.  B ) )
 
Theoremzringmulr 14563 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 x.  =  ( .r
 ` ring
 )
 
Theoremzring0 14564 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  0  =  ( 0g
 ` ring
 )
 
Theoremzring1 14565 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  1  =  ( 1r
 ` ring
 )
 
Theoremzringnzr 14566 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
 |-ring  e. NzRing
 
Theoremdvdsrzring 14567 Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
 |-  ||  =  ( ||r ` ring )
 
Theoremzringinvg 14568 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
 |-  ( A  e.  ZZ  -> 
 -u A  =  ( ( invg ` ring ) `  A ) )
 
Theoremzringsubgval 14569 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 14570 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
Theoremexpghmap 14571* Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
 |-  M  =  (mulGrp ` fld )   &    |-  U  =  ( Ms 
 { z  e.  CC  |  z #  0 }
 )   =>    |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
 
Theoremmulgghm2 14572* The powers of a group element give a homomorphism from  ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  B  =  ( Base `  R )   =>    |-  (
 ( R  e.  Grp  /\ 
 .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
 
Theoremmulgrhm 14573* The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  F  e.  (ring RingHom  R ) )
 
Theoremmulgrhm2 14574* The powers of the element  1 give the unique ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- 
 .x.  =  (.g `  R )   &    |-  F  =  ( n  e.  ZZ  |->  ( n 
 .x.  .1.  ) )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  (ring RingHom  R )  =  { F } )
 
7.7.3  Algebraic constructions based on the complex numbers
 
Syntaxczrh 14575 Map the rationals into a field, or the integers into a ring.
 class  ZRHom
 
Syntaxczlm 14576 Augment an abelian group with vector space operations to turn it into a  ZZ-module.
 class  ZMod
 
Syntaxczn 14577 The ring of integers modulo  n.
 class ℤ/n
 
Definitiondf-zrh 14578 Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 
n  =  1r  +  1r  +  ...  +  1r for integers (see also df-mulg 13657). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZRHom  =  ( r  e.  _V  |->  U. (ring RingHom  r ) )
 
Definitiondf-zlm 14579 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  ZMod  =  ( g  e.  _V  |->  ( ( g sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  (.g `  g
 ) >. ) )
 
Definitiondf-zn 14580* Define the ring of integers  mod  n. This is literally the quotient ring of  ZZ by the ideal  n ZZ, but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |- ℤ/n =  ( n  e.  NN0  |->  [_ring  /  z ]_ [_ (
 z  /.s  ( z ~QG  ( (RSpan `  z
 ) `  { n } ) ) ) 
 /  s ]_ (
 s sSet  <. ( le `  ndx ) ,  [_ ( ( ZRHom `  s )  |` 
 if ( n  =  0 ,  ZZ ,  ( 0..^ n ) ) )  /  f ]_ ( ( f  o. 
 <_  )  o.  `' f
 ) >. ) )
 
Theoremzrhval 14581 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  L  =  U. (ring RingHom  R )
 
Theoremzrhvalg 14582 Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  =  U. (ring RingHom  R ) )
 
Theoremzrhval2 14583* Alternate value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  L  =  ( n  e. 
 ZZ  |->  ( n  .x.  .1.  ) ) )
 
Theoremzrhmulg 14584 Value of the  ZRHom homomorphism. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .x.  =  (.g `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  N  e.  ZZ )  ->  ( L `  N )  =  ( N  .x.  .1.  ) )
 
Theoremzrhex 14585 Set existence for  ZRHom. (Contributed by Jim Kingdon, 19-May-2025.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  V  ->  L  e.  _V )
 
Theoremzrhrhmb 14586 The  ZRHom homomorphism is the unique ring homomorphism from  ZZ. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  ( F  e.  (ring RingHom  R )  <->  F  =  L )
 )
 
Theoremzrhrhm 14587 The  ZRHom homomorphism is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 12-Jun-2019.)
 |-  L  =  ( ZRHom `  R )   =>    |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
 
Theoremzrh1 14588 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  1 )  =  .1.  )
 
Theoremzrh0 14589 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  0 )  =  .0.  )
 
Theoremzrhpropd 14590* The  ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( ZRHom `  K )  =  ( ZRHom `  L ) )
 
Theoremzlmval 14591 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. ) )
 
Theoremzlmlemg 14592 Lemma for zlmbasg 14593 and zlmplusgg 14594. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
Theoremzlmbasg 14593 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
Theoremzlmplusgg 14594 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremzlmmulrg 14595 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
Theoremzlmsca 14596 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
Theoremzlmvscag 14597 Scalar multiplication operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .s
 `  W ) )
 
Theoremznlidl 14598 The set  n ZZ is an ideal in  ZZ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   =>    |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
 
Theoremzncrng2 14599 Making a commutative ring as a quotient of  ZZ and 
n ZZ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   =>    |-  ( N  e.  ZZ  ->  U  e.  CRing )
 
Theoremznval 14600 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16452
  Copyright terms: Public domain < Previous  Next >