HomeHome Intuitionistic Logic Explorer
Theorem List (p. 146 of 163)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14501-14600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzrh1 14501 Interpretation of 1 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  1 )  =  .1.  )
 
Theoremzrh0 14502 Interpretation of 0 in a ring. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  L  =  ( ZRHom `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( L `  0 )  =  .0.  )
 
Theoremzrhpropd 14503* The  ZZ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )   =>    |-  ( ph  ->  ( ZRHom `  K )  =  ( ZRHom `  L ) )
 
Theoremzlmval 14504 Augment an abelian group with vector space operations to turn it into a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  W  =  ( ( G sSet  <. (Scalar `  ndx ) ,ring >. ) sSet  <. ( .s `  ndx ) ,  .x.  >. ) )
 
Theoremzlmlemg 14505 Lemma for zlmbasg 14506 and zlmplusgg 14507. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  (Scalar `  ndx )   &    |-  ( E `  ndx )  =/=  ( .s `  ndx )   =>    |-  ( G  e.  V  ->  ( E `  G )  =  ( E `  W ) )
 
Theoremzlmbasg 14506 Base set of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  B  =  (
 Base `  G )   =>    |-  ( G  e.  V  ->  B  =  (
 Base `  W ) )
 
Theoremzlmplusgg 14507 Group operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremzlmmulrg 14508 Ring operation of a  ZZ-module (if present). (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 3-Nov-2024.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  ( .r `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .r `  W ) )
 
Theoremzlmsca 14509 Scalar ring of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.)
 |-  W  =  ( ZMod `  G )   =>    |-  ( G  e.  V  ->ring  =  (Scalar `  W )
 )
 
Theoremzlmvscag 14510 Scalar multiplication operation of a  ZZ-module. (Contributed by Mario Carneiro, 2-Oct-2015.)
 |-  W  =  ( ZMod `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( G  e.  V  ->  .x.  =  ( .s
 `  W ) )
 
Theoremznlidl 14511 The set  n ZZ is an ideal in  ZZ. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   =>    |-  ( N  e.  ZZ  ->  ( S `  { N } )  e.  (LIdeal ` ring ) )
 
Theoremzncrng2 14512 Making a commutative ring as a quotient of  ZZ and 
n ZZ. (Contributed by Mario Carneiro, 12-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   =>    |-  ( N  e.  ZZ  ->  U  e.  CRing )
 
Theoremznval 14513 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( ( F  o.  <_  )  o.  `' F )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznle 14514 The value of the ℤ/nℤ structure. It is defined as the quotient ring  ZZ  /  n ZZ, with an "artificial" ordering added. (In other words, ℤ/nℤ is a ring with an order , but it is not an ordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  U )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznval2 14515 Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  Y  =  ( U sSet  <.
 ( le `  ndx ) ,  .<_  >. ) )
 
Theoremznbaslemnn 14516 Lemma for znbas 14521. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  E  = Slot  ( E `  ndx )   &    |-  ( E `  ndx )  e. 
 NN   &    |-  ( E `  ndx )  =/=  ( le `  ndx )   =>    |-  ( N  e.  NN0  ->  ( E `  U )  =  ( E `  Y ) )
 
Theoremznbas2 14517 The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( Base `  U )  =  ( Base `  Y )
 )
 
Theoremznadd 14518 The additive structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( +g  `  U )  =  ( +g  `  Y ) )
 
Theoremznmul 14519 The multiplicative structure of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 3-Nov-2024.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( .r `  U )  =  ( .r `  Y ) )
 
Theoremznzrh 14520 The  ZZ ring homomorphism of ℤ/nℤ is inherited from the quotient ring it is based on. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  U  =  (ring  /.s  (ring ~QG  ( S `
  { N }
 ) ) )   &    |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  ( ZRHom `  U )  =  ( ZRHom `  Y ) )
 
Theoremznbas 14521 The base set of ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  Y  =  (ℤ/n `  N )   &    |-  R  =  (ring ~QG  ( S `
  { N }
 ) )   =>    |-  ( N  e.  NN0  ->  ( ZZ /. R )  =  ( Base `  Y ) )
 
Theoremzncrng 14522 ℤ/nℤ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN0  ->  Y  e.  CRing )
 
Theoremznzrh2 14523* The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  .~  =  (ring ~QG  ( S `  { N }
 ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( N  e.  NN0  ->  L  =  ( x  e.  ZZ  |->  [ x ]  .~  )
 )
 
Theoremznzrhval 14524 The  ZZ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  S  =  (RSpan ` ring )   &    |-  .~  =  (ring ~QG  ( S `  { N }
 ) )   &    |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  (
 ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A )  =  [ A ]  .~  )
 
Theoremznzrhfo 14525 The  ZZ ring homomorphism is a surjection onto ℤ/nℤ. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
 
Theoremzndvds 14526 Express equality of equivalence classes in  ZZ 
/  n ZZ in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( L `  A )  =  ( L `  B )  <->  N  ||  ( A  -  B ) ) )
 
Theoremzndvds0 14527 Special case of zndvds 14526 when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  L  =  ( ZRHom `  Y )   &    |-  .0.  =  ( 0g `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  =  .0.  <->  N  ||  A ) )
 
Theoremznf1o 14528 The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  (
 0..^ N ) )   =>    |-  ( N  e.  NN0  ->  F : W -1-1-onto-> B )
 
Theoremznle2 14529 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   =>    |-  ( N  e.  NN0  ->  .<_  =  ( ( F  o.  <_  )  o.  `' F ) )
 
Theoremznleval 14530 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   &    |-  X  =  ( Base `  Y )   =>    |-  ( N  e.  NN0  ->  ( A  .<_  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( `' F `  A )  <_  ( `' F `  B ) ) ) )
 
Theoremznleval2 14531 The ordering of the ℤ/nℤ structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
 |-  Y  =  (ℤ/n `  N )   &    |-  F  =  ( ( ZRHom `  Y )  |`  W )   &    |-  W  =  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )   &    |-  .<_  =  ( le `  Y )   &    |-  X  =  ( Base `  Y )   =>    |-  ( ( N  e.  NN0  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .<_  B  <->  ( `' F `  A )  <_  ( `' F `  B ) ) )
 
Theoremznfi 14532 The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   =>    |-  ( N  e.  NN  ->  B  e.  Fin )
 
Theoremznhash 14533 The ℤ/nℤ structure has  n elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   &    |-  B  =  ( Base `  Y )   =>    |-  ( N  e.  NN  ->  ( `  B )  =  N )
 
Theoremznidom 14534 The ℤ/nℤ structure is an integral domain when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Jim Kingdon, 13-Aug-2025.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  Prime  ->  Y  e. IDomn )
 
Theoremznidomb 14535 The ℤ/nℤ structure is a domain precisely when  n is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  Y  =  (ℤ/n `  N )   =>    |-  ( N  e.  NN  ->  ( Y  e. IDomn  <->  N  e.  Prime ) )
 
Theoremznunit 14536 The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  U  =  (Unit `  Y )   &    |-  L  =  ( ZRHom `  Y )   =>    |-  (
 ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
 
Theoremznrrg 14537 The regular elements of ℤ/nℤ are exactly the units. (This theorem fails for  N  =  0, where all nonzero integers are regular, but only  pm 1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
 |-  Y  =  (ℤ/n `  N )   &    |-  U  =  (Unit `  Y )   &    |-  E  =  (RLReg `  Y )   =>    |-  ( N  e.  NN  ->  E  =  U )
 
PART 8  BASIC LINEAR ALGEBRA

According to Wikipedia ("Linear algebra", 03-Mar-2019, https://en.wikipedia.org/wiki/Linear_algebra) "Linear algebra is the branch of mathematics concerning linear equations [...], linear functions [...] and their representations through matrices and vector spaces." Or according to the Merriam-Webster dictionary ("linear algebra", 12-Mar-2019, https://www.merriam-webster.com/dictionary/linear%20algebra) "Definition of linear algebra: a branch of mathematics that is concerned with mathematical structures closed under the operations of addition and scalar multiplication and that includes the theory of systems of linear equations, matrices, determinants, vector spaces, and linear transformations." Dealing with modules (over rings) instead of vector spaces (over fields) allows for a more unified approach. Therefore, linear equations, matrices, determinants, are usually regarded as "over a ring" in this part.

Unless otherwise stated, the rings of scalars need not be commutative (see df-cring 13876), but the existence of a unity element is always assumed (our rings are unital, see df-ring 13875).

For readers knowing vector spaces but unfamiliar with modules: the elements of a module are still called "vectors" and they still form a group under addition, with a zero vector as neutral element, like in a vector space. Like in a vector space, vectors can be multiplied by scalars, with the usual rules, the only difference being that the scalars are only required to form a ring, and not necessarily a field or a division ring. Note that any vector space is a (special kind of) module, so any theorem proved below for modules applies to any vector space.

 
8.1  Abstract multivariate polynomials
 
8.1.1  Definition and basic properties
 
Syntaxcmps 14538 Multivariate power series.
 class mPwSer
 
Syntaxcmpl 14539 Multivariate polynomials.
 class mPoly
 
Definitiondf-psr 14540* Define the algebra of power series over the index set  i and with coefficients from the ring  r. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- mPwSer  =  ( i  e.  _V ,  r  e.  _V  |->  [_
 { h  e.  ( NN0  ^m  i )  |  ( `' h " NN )  e.  Fin } 
 /  d ]_ [_ (
 ( Base `  r )  ^m  d )  /  b ]_ ( { <. ( Base ` 
 ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  r
 )  |`  ( b  X.  b ) ) >. , 
 <. ( .r `  ndx ) ,  ( f  e.  b ,  g  e.  b  |->  ( k  e.  d  |->  ( r  gsumg  ( x  e.  { y  e.  d  |  y  oR  <_  k }  |->  ( ( f `  x ) ( .r
 `  r ) ( g `  ( k  oF  -  x ) ) ) ) ) ) ) >. }  u.  { <. (Scalar `  ndx ) ,  r >. , 
 <. ( .s `  ndx ) ,  ( x  e.  ( Base `  r ) ,  f  e.  b  |->  ( ( d  X.  { x } )  oF ( .r `  r ) f ) ) >. ,  <. (TopSet `  ndx ) ,  ( Xt_ `  ( d  X.  {
 ( TopOpen `  r ) } ) ) >. } ) )
 
Definitiondf-mplcoe 14541* Define the subalgebra of the power series algebra generated by the variables; this is the polynomial algebra (the set of power series with finite degree).

The index set (which has an element for each variable) is  i, the coefficients are in ring  r, and for each variable there is a "degree" such that the coefficient is zero for a term where the powers are all greater than those degrees. (Degree is in quotes because there is no guarantee that coefficients below that degree are nonzero, as we do not assume decidable equality for  r). (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 7-Oct-2025.)

 |- mPoly  =  ( i  e.  _V ,  r  e.  _V  |->  [_ ( i mPwSer  r ) 
 /  w ]_ ( ws  { f  e.  ( Base `  w )  |  E. a  e.  ( NN0  ^m  i ) A. b  e.  ( NN0  ^m  i
 ) ( A. k  e.  i  ( a `  k )  <  (
 b `  k )  ->  ( f `  b
 )  =  ( 0g
 `  r ) ) } ) )
 
Theoremreldmpsr 14542 The multivariate power series constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- 
 Rel  dom mPwSer
 
Theorempsrval 14543* Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  O  =  ( TopOpen `  R )   &    |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }   &    |-  ( ph  ->  B  =  ( K  ^m  D ) )   &    |-  .+b  =  (  oF  .+  |`  ( B  X.  B ) )   &    |-  .X. 
 =  ( f  e.  B ,  g  e.  B  |->  ( k  e.  D  |->  ( R  gsumg  ( x  e.  { y  e.  D  |  y  oR  <_  k }  |->  ( ( f `  x )  .x.  ( g `
  ( k  oF  -  x ) ) ) ) ) ) )   &    |-  .xb  =  ( x  e.  K ,  f  e.  B  |->  ( ( D  X.  { x } )  oF  .x.  f ) )   &    |-  ( ph  ->  J  =  (
 Xt_ `  ( D  X.  { O } )
 ) )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R  e.  X )   =>    |-  ( ph  ->  S  =  ( { <. ( Base ` 
 ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  .+b  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .xb  >. ,  <. (TopSet `  ndx ) ,  J >. } ) )
 
Theoremfnpsr 14544 The multivariate power series constructor has a universal domain. (Contributed by Jim Kingdon, 16-Jun-2025.)
 |- mPwSer  Fn  ( _V  X.  _V )
 
Theorempsrvalstrd 14545 The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.)
 |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  .+  e.  Y )   &    |-  ( ph  ->  .X.  e.  Z )   &    |-  ( ph  ->  R  e.  W )   &    |-  ( ph  ->  .x. 
 e.  P )   &    |-  ( ph  ->  J  e.  Q )   =>    |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. , 
 <. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  R >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. (TopSet `  ndx ) ,  J >. } ) Struct  <. 1 ,  9 >. )
 
Theorempsrbag 14546* Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
 
Theorempsrbagf 14547* A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( F  e.  D  ->  F : I --> NN0 )
 
Theoremfczpsrbag 14548* The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( x  e.  I  |->  0 )  e.  D )
 
Theorempsrbaglesuppg 14549* The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F ) ) 
 ->  ( `' G " NN )  C_  ( `' F " NN )
 )
 
Theorempsrbagfi 14550* A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  Fin  ->  D  =  ( NN0  ^m  I ) )
 
Theorempsrbasg 14551* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  W )   =>    |-  ( ph  ->  B  =  ( K  ^m  D ) )
 
Theorempsrelbas 14552* An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : D --> K )
 
Theorempsrelbasfi 14553 Simpler form of psrelbas 14552 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : ( NN0  ^m  I
 ) --> K )
 
Theorempsrelbasfun 14554 An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   =>    |-  ( X  e.  B  ->  Fun  X )
 
Theorempsrplusgg 14555 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  S )   =>    |-  (
 ( I  e.  V  /\  R  e.  W ) 
 ->  .+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
 
Theorempsradd 14556 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  S )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+b  Y )  =  ( X  oF  .+  Y ) )
 
Theorempsraddcl 14557 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  R  e. Mgm )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
Theorempsr0cl 14558* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  B  =  ( Base `  S )   =>    |-  ( ph  ->  ( D  X.  {  .0.  }
 )  e.  B )
 
Theorempsr0lid 14559* The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  B  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (
 ( D  X.  {  .0.  } )  .+  X )  =  X )
 
Theorempsrnegcl 14560* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  N  =  ( invg `  R )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  o.  X )  e.  B )
 
Theorempsrlinv 14561* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  N  =  ( invg `  R )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .+  =  ( +g  `  S )   =>    |-  ( ph  ->  (
 ( N  o.  X )  .+  X )  =  ( D  X.  {  .0.  } ) )
 
Theorempsrgrp 14562 The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  S  e.  Grp )
 
Theorempsr0 14563* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  O  =  ( 0g `  R )   &    |-  .0.  =  ( 0g `  S )   =>    |-  ( ph  ->  .0.  =  ( D  X.  { O } ) )
 
Theorempsrneg 14564* The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  N  =  ( invg `  R )   &    |-  B  =  ( Base `  S )   &    |-  M  =  ( invg `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( M `  X )  =  ( N  o.  X ) )
 
Theorempsr1clfi 14565* The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )   &    |-  B  =  ( Base `  S )   =>    |-  ( ph  ->  U  e.  B )
 
Theoremreldmmpl 14566 The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |- 
 Rel  dom mPoly
 
Theoremmplvalcoe 14567* Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  (
 f `  b )  =  .0.  ) }   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
 
Theoremmplbascoe 14568* Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  U  =  { f  e.  B  |  E. a  e.  ( NN0  ^m  I ) A. b  e.  ( NN0  ^m  I ) ( A. k  e.  I  (
 a `  k )  <  ( b `  k
 )  ->  ( f `  b )  =  .0.  ) } )
 
Theoremmplelbascoe 14569* Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  R )   &    |-  U  =  ( Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  ( X  e.  U  <->  ( X  e.  B  /\  E. a  e.  ( NN0  ^m  I
 ) A. b  e.  ( NN0  ^m  I ) (
 A. k  e.  I  ( a `  k
 )  <  ( b `  k )  ->  ( X `  b )  =  .0.  ) ) ) )
 
Theoremfnmpl 14570 mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.)
 |- mPoly  Fn  ( _V  X.  _V )
 
Theoremmplrcl 14571 Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   =>    |-  ( X  e.  B  ->  I  e.  _V )
 
Theoremmplval2g 14572 Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  U  =  (
 Base `  P )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  P  =  ( Ss  U ) )
 
Theoremmplbasss 14573 The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  U  =  (
 Base `  P )   &    |-  B  =  ( Base `  S )   =>    |-  U  C_  B
 
Theoremmplelf 14574* A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  K  =  (
 Base `  R )   &    |-  B  =  ( Base `  P )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : D --> K )
 
Theoremmplsubgfilemm 14575* Lemma for mplsubgfi 14578. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  E. j  j  e.  U )
 
Theoremmplsubgfilemcl 14576 Lemma for mplsubgfi 14578. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  ( ph  ->  Y  e.  U )   &    |- 
 .+  =  ( +g  `  S )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  U )
 
Theoremmplsubgfileminv 14577 Lemma for mplsubgfi 14578. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  U )   &    |-  N  =  ( invg `  S )   =>    |-  ( ph  ->  ( N `  X )  e.  U )
 
Theoremmplsubgfi 14578 The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  P  =  ( I mPoly  R )   &    |-  U  =  ( Base `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  U  e.  (SubGrp `  S )
 )
 
Theoremmpl0fi 14579* The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  O  =  ( 0g `  R )   &    |-  .0.  =  ( 0g `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  .0.  =  ( x  e.  ( NN0  ^m  I )  |->  O ) )
 
Theoremmplplusgg 14580 Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  Y  =  ( I mPoly  R )   &    |-  S  =  ( I mPwSer  R )   &    |-  .+  =  ( +g  `  Y )   =>    |-  ( ( I  e.  V  /\  R  e.  W )  ->  .+  =  ( +g  `  S )
 )
 
Theoremmpladd 14581 The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  P )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+b  Y )  =  ( X  oF  .+  Y ) )
 
Theoremmplnegfi 14582 The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.)
 |-  P  =  ( I mPoly  R )   &    |-  B  =  (
 Base `  P )   &    |-  N  =  ( invg `  R )   &    |-  M  =  ( invg `  P )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( M `  X )  =  ( N  o.  X ) )
 
Theoremmplgrpfi 14583 The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.)
 |-  P  =  ( I mPoly  R )   =>    |-  ( ( I  e. 
 Fin  /\  R  e.  Grp )  ->  P  e.  Grp )
 
PART 9  BASIC TOPOLOGY
 
9.1  Topology
 
9.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
9.1.1.1  Topologies
 
Syntaxctop 14584 Syntax for the class of topologies.
 class  Top
 
Definitiondf-top 14585* Define the class of topologies. It is a proper class. See istopg 14586 and istopfin 14587 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

 |- 
 Top  =  { x  |  ( A. y  e. 
 ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x ) }
 
Theoremistopg 14586* Express the predicate " J is a topology". See istopfin 14587 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use  T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

 |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J ) ) )
 
Theoremistopfin 14587* Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14586. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
 |-  ( J  e.  Top  ->  ( A. x ( x 
 C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
 C_  J  /\  x  =/= 
 (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
 
Theoremuniopn 14588 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremiunopn 14589* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  -> 
 U_ x  e.  A  B  e.  J )
 
Theoreminopn 14590 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B )  e.  J )
 
Theoremfiinopn 14591 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
 |-  ( J  e.  Top  ->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
 
Theoremunopn 14592 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B )  e.  J )
 
Theorem0opn 14593 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  J )
 
Theorem0ntop 14594 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
 |- 
 -.  (/)  e.  Top
 
Theoremtopopn 14595 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  J )
 
Theoremeltopss 14596 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  J ) 
 ->  A  C_  X )
 
9.1.1.2  Topologies on sets
 
Syntaxctopon 14597 Syntax for the function of topologies on sets.
 class TopOn
 
Definitiondf-topon 14598* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
 |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  |  b  =  U. j }
 )
 
Theoremfuntopon 14599 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
 |- 
 Fun TopOn
 
Theoremistopon 14600 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  <->  ( J  e.  Top  /\  B  =  U. J ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16225
  Copyright terms: Public domain < Previous  Next >