| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a |
|
| Ref | Expression |
|---|---|
| con3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | con3i.a |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 nsyl5 651 conax1 655 pm5.21ni 705 pm2.45 740 pm2.46 741 pm3.14 755 3ianorr 1322 nalequcoms 1540 equidqe 1555 nnal 1672 ax6blem 1673 hbnt 1676 naecoms 1747 euor2 2112 moexexdc 2138 baroco 2161 necon3ai 2425 necon3bi 2426 nnral 2496 eueq3dc 2947 difin 3410 indifdir 3429 difrab 3447 csbprc 3506 ifandc 3610 nelpri 3657 nelprd 3659 opprc 3840 opprc1 3841 opprc2 3842 notnotsnex 4231 eldifpw 4524 nlimsucg 4614 nfvres 5610 nfunsn 5611 ressnop0 5765 ovprc 5980 ovprc1 5981 ovprc2 5982 mapprc 6739 ixpprc 6806 ixp0 6818 fiprc 6907 fidceq 6966 unfiexmid 7015 difinfsnlem 7201 3nsssucpw1 7348 onntri51 7352 onntri52 7356 fzdcel 10162 bcpasc 10911 flodddiv4lt 12249 bj-nnan 15676 bj-imnimnn 15678 nnnotnotr 15930 nninfsellemsuc 15953 |
| Copyright terms: Public domain | W3C validator |