| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a |
|
| Ref | Expression |
|---|---|
| con3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | con3i.a |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 nsyl5 651 conax1 655 pm5.21ni 705 pm2.45 740 pm2.46 741 pm3.14 755 3ianorr 1322 nalequcoms 1540 equidqe 1555 nnal 1672 ax6blem 1673 hbnt 1676 naecoms 1747 euor2 2112 moexexdc 2138 baroco 2161 necon3ai 2425 necon3bi 2426 nnral 2496 eueq3dc 2947 difin 3410 indifdir 3429 difrab 3447 csbprc 3506 ifandc 3610 nelpri 3657 nelprd 3659 opprc 3840 opprc1 3841 opprc2 3842 notnotsnex 4232 eldifpw 4525 nlimsucg 4615 nfvres 5612 nfunsn 5613 ressnop0 5767 ovprc 5982 ovprc1 5983 ovprc2 5984 mapprc 6741 ixpprc 6808 ixp0 6820 fiprc 6909 fidceq 6968 unfiexmid 7017 difinfsnlem 7203 3nsssucpw1 7350 onntri51 7354 onntri52 7358 fzdcel 10164 bcpasc 10913 flodddiv4lt 12282 bj-nnan 15709 bj-imnimnn 15711 nnnotnotr 15963 nninfsellemsuc 15986 |
| Copyright terms: Public domain | W3C validator |