| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a |
|
| Ref | Expression |
|---|---|
| con3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | con3i.a |
. 2
| |
| 3 | 1, 2 | nsyl 629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: notnotnot 635 nsyl5 651 conax1 655 pm5.21ni 705 pm2.45 740 pm2.46 741 pm3.14 755 3ianorr 1322 nalequcoms 1541 equidqe 1556 nnal 1673 ax6blem 1674 hbnt 1677 naecoms 1748 euor2 2114 moexexdc 2140 baroco 2163 necon3ai 2427 necon3bi 2428 nnral 2498 eueq3dc 2954 difin 3418 indifdir 3437 difrab 3455 csbprc 3514 ifandc 3620 nelpri 3667 nelprd 3669 opprc 3854 opprc1 3855 opprc2 3856 notnotsnex 4247 eldifpw 4542 nlimsucg 4632 nfvres 5633 nfunsn 5634 ressnop0 5788 ovprc 6003 ovprc1 6004 ovprc2 6005 mapprc 6762 ixpprc 6829 ixp0 6841 fiprc 6931 fidceq 6992 unfiexmid 7041 difinfsnlem 7227 3nsssucpw1 7382 onntri51 7386 onntri52 7390 fzdcel 10197 bcpasc 10948 pfxclz 11170 flodddiv4lt 12364 bj-nnan 15872 bj-imnimnn 15874 nnnotnotr 16125 nninfsellemsuc 16151 |
| Copyright terms: Public domain | W3C validator |