![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con3i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | con3i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 628 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 614 ax-in2 615 |
This theorem is referenced by: notnotnot 634 conax1 653 pm5.21ni 703 pm2.45 738 pm2.46 739 pm3.14 753 3ianorr 1309 nalequcoms 1517 equidqe 1532 nnal 1649 ax6blem 1650 hbnt 1653 naecoms 1724 euor2 2084 moexexdc 2110 baroco 2133 necon3ai 2396 necon3bi 2397 nnral 2467 eueq3dc 2913 difin 3374 indifdir 3393 difrab 3411 csbprc 3470 ifandc 3574 nelpri 3618 nelprd 3620 opprc 3801 opprc1 3802 opprc2 3803 notnotsnex 4189 eldifpw 4479 nlimsucg 4567 nfvres 5550 nfunsn 5551 ressnop0 5699 ovprc 5912 ovprc1 5913 ovprc2 5914 mapprc 6654 ixpprc 6721 ixp0 6733 fiprc 6817 fidceq 6871 unfiexmid 6919 difinfsnlem 7100 3nsssucpw1 7237 onntri51 7241 onntri52 7245 fzdcel 10042 bcpasc 10748 flodddiv4lt 11943 bj-nnan 14527 bj-imnimnn 14529 nnnotnotr 14781 nninfsellemsuc 14800 |
Copyright terms: Public domain | W3C validator |