![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con3i | Unicode version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
con3i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | con3i.a |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nsyl 629 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: notnotnot 635 conax1 654 pm5.21ni 704 pm2.45 739 pm2.46 740 pm3.14 754 3ianorr 1320 nalequcoms 1528 equidqe 1543 nnal 1660 ax6blem 1661 hbnt 1664 naecoms 1735 euor2 2100 moexexdc 2126 baroco 2149 necon3ai 2413 necon3bi 2414 nnral 2484 eueq3dc 2935 difin 3397 indifdir 3416 difrab 3434 csbprc 3493 ifandc 3596 nelpri 3643 nelprd 3645 opprc 3826 opprc1 3827 opprc2 3828 notnotsnex 4217 eldifpw 4509 nlimsucg 4599 nfvres 5589 nfunsn 5590 ressnop0 5740 ovprc 5954 ovprc1 5955 ovprc2 5956 mapprc 6708 ixpprc 6775 ixp0 6787 fiprc 6871 fidceq 6927 unfiexmid 6976 difinfsnlem 7160 3nsssucpw1 7298 onntri51 7302 onntri52 7306 fzdcel 10109 bcpasc 10840 flodddiv4lt 12080 bj-nnan 15298 bj-imnimnn 15300 nnnotnotr 15552 nninfsellemsuc 15572 |
Copyright terms: Public domain | W3C validator |