| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con3i | Unicode version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
| Ref | Expression |
|---|---|
| con3i.a |
|
| Ref | Expression |
|---|---|
| con3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | con3i.a |
. 2
| |
| 3 | 1, 2 | nsyl 631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: notnotnot 637 nsyl5 653 conax1 657 pm5.21ni 708 pm2.45 743 pm2.46 744 pm3.14 758 3ianorr 1343 nalequcoms 1563 equidqe 1578 nnal 1695 ax6blem 1696 hbnt 1699 naecoms 1770 euor2 2136 moexexdc 2162 baroco 2185 necon3ai 2449 necon3bi 2450 nnral 2520 eueq3dc 2977 difin 3441 indifdir 3460 difrab 3478 csbprc 3537 ifandc 3643 nelpri 3690 nelprd 3692 opprc 3878 opprc1 3879 opprc2 3880 notnotsnex 4271 eldifpw 4568 nlimsucg 4658 nfvres 5663 nfunsn 5664 ressnop0 5820 ovprc 6037 ovprc1 6038 ovprc2 6039 mapprc 6799 ixpprc 6866 ixp0 6878 fiprc 6968 fidceq 7031 unfiexmid 7080 difinfsnlem 7266 3nsssucpw1 7421 onntri51 7425 onntri52 7429 fzdcel 10236 bcpasc 10988 pfxclz 11211 flodddiv4lt 12449 bj-nnan 16100 bj-imnimnn 16102 nnnotnotr 16353 nninfsellemsuc 16378 |
| Copyright terms: Public domain | W3C validator |