Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stim Unicode version

Theorem bj-stim 14638
Description: A conjunction with a stable consequent is stable. See stabnot 833 for negation , bj-stan 14639 for conjunction , and bj-stal 14641 for universal quantification. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-stim  |-  (STAB  ps  -> STAB  ( ph  ->  ps ) )

Proof of Theorem bj-stim
StepHypRef Expression
1 bj-nnim 14627 . . 3  |-  ( -. 
-.  ( ph  ->  ps )  ->  ( ph  ->  -.  -.  ps )
)
2 imim2 55 . . 3  |-  ( ( -.  -.  ps  ->  ps )  ->  ( ( ph  ->  -.  -.  ps )  ->  ( ph  ->  ps ) ) )
31, 2syl5 32 . 2  |-  ( ( -.  -.  ps  ->  ps )  ->  ( -.  -.  ( ph  ->  ps )  ->  ( ph  ->  ps ) ) )
4 df-stab 831 . 2  |-  (STAB  ps  <->  ( -.  -.  ps  ->  ps )
)
5 df-stab 831 . 2  |-  (STAB  ( ph  ->  ps )  <->  ( -.  -.  ( ph  ->  ps )  ->  ( ph  ->  ps ) ) )
63, 4, 53imtr4i 201 1  |-  (STAB  ps  -> STAB  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-stab 831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator