| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-stim | Unicode version | ||
| Description: A conjunction with a stable consequent is stable. See stabnot 834 for negation , bj-stan 15403 for conjunction , and bj-stal 15405 for universal quantification. (Contributed by BJ, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| bj-stim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnim 15391 |
. . 3
| |
| 2 | imim2 55 |
. . 3
| |
| 3 | 1, 2 | syl5 32 |
. 2
|
| 4 | df-stab 832 |
. 2
| |
| 5 | df-stab 832 |
. 2
| |
| 6 | 3, 4, 5 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-stab 832 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |