| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 |
|
| 3imtr4.2 |
|
| 3imtr4.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 |
. . 3
| |
| 2 | 3imtr4.1 |
. . 3
| |
| 3 | 1, 2 | sylbi 121 |
. 2
|
| 4 | 3imtr4.3 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 844 stdcn 849 xordc1 1413 hbxfrbi 1495 nfalt 1601 19.29r 1644 19.31r 1704 sbimi 1787 spsbbi 1867 sbi2v 1916 euan 2110 2exeu 2146 ralimi2 2566 reximi2 2602 r19.28av 2642 r19.29r 2644 elex 2783 rmoan 2973 rmoimi2 2976 sseq2 3217 rabss2 3276 unssdif 3408 inssdif 3409 unssin 3412 inssun 3413 rabn0r 3487 undif4 3523 ssdif0im 3525 inssdif0im 3528 ssundifim 3544 ralf0 3563 prmg 3754 difprsnss 3771 snsspw 3805 pwprss 3846 pwtpss 3847 uniin 3870 intss 3906 iuniin 3937 iuneq1 3940 iuneq2 3943 iundif2ss 3993 iinuniss 4010 iunpwss 4019 intexrabim 4197 exmidundif 4250 exmidundifim 4251 exss 4271 pwunss 4330 soeq2 4363 ordunisuc2r 4562 peano5 4646 reliin 4797 coeq1 4835 coeq2 4836 cnveq 4852 dmeq 4878 dmin 4886 dmcoss 4948 rncoeq 4952 resiexg 5004 dminss 5097 imainss 5098 dfco2a 5183 euiotaex 5248 eliotaeu 5260 fundif 5318 fununi 5342 fof 5498 f1ocnv 5535 rexrnmpt 5723 isocnv 5880 isotr 5885 oprabid 5976 dmtpos 6342 tposfn 6359 smores 6378 eqer 6652 ixpeq2 6799 enssdom 6853 fiprc 6907 fiintim 7028 ltexprlemlol 7715 ltexprlemupu 7717 recexgt0 8653 peano2uz2 9480 eluzp1p1 9674 peano2uz 9704 zq 9747 ubmelfzo 10329 frecuzrdgtcl 10557 frecuzrdgfunlem 10564 expclzaplem 10708 hashfiv01gt1 10927 wrdeq 11016 fsum2dlemstep 11745 fprod2dlemstep 11933 sin02gt0 12075 qredeu 12419 prmdc 12452 subrngrng 13964 lgslem3 15479 bj-stim 15686 bj-stan 15687 bj-stal 15689 bj-nfalt 15704 bj-indint 15871 tridceq 15999 |
| Copyright terms: Public domain | W3C validator |