Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 | |
3imtr4.2 | |
3imtr4.3 |
Ref | Expression |
---|---|
3imtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 | . . 3 | |
2 | 3imtr4.1 | . . 3 | |
3 | 1, 2 | sylbi 120 | . 2 |
4 | 3imtr4.3 | . 2 | |
5 | 3, 4 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: dcn 837 stdcn 842 dcan 928 xordc1 1388 hbxfrbi 1465 nfalt 1571 19.29r 1614 19.31r 1674 sbimi 1757 spsbbi 1837 sbi2v 1885 euan 2075 2exeu 2111 ralimi2 2530 reximi2 2566 r19.28av 2606 r19.29r 2608 elex 2741 rmoan 2930 rmoimi2 2933 sseq2 3171 rabss2 3230 unssdif 3362 inssdif 3363 unssin 3366 inssun 3367 rabn0r 3440 undif4 3476 ssdif0im 3478 inssdif0im 3481 ssundifim 3497 ralf0 3517 prmg 3702 difprsnss 3716 snsspw 3749 pwprss 3790 pwtpss 3791 uniin 3814 intss 3850 iuniin 3881 iuneq1 3884 iuneq2 3887 iundif2ss 3936 iinuniss 3953 iunpwss 3962 intexrabim 4137 exmidundif 4190 exmidundifim 4191 exss 4210 pwunss 4266 soeq2 4299 ordunisuc2r 4496 peano5 4580 reliin 4731 coeq1 4766 coeq2 4767 cnveq 4783 dmeq 4809 dmin 4817 dmcoss 4878 rncoeq 4882 resiexg 4934 dminss 5023 imainss 5024 dfco2a 5109 euiotaex 5174 eliotaeu 5185 fununi 5264 fof 5418 f1ocnv 5453 rexrnmpt 5636 isocnv 5787 isotr 5792 oprabid 5882 dmtpos 6232 tposfn 6249 smores 6268 eqer 6541 ixpeq2 6686 enssdom 6736 fiprc 6789 fiintim 6902 ltexprlemlol 7551 ltexprlemupu 7553 recexgt0 8486 peano2uz2 9306 eluzp1p1 9499 peano2uz 9529 zq 9572 ubmelfzo 10143 frecuzrdgtcl 10355 frecuzrdgfunlem 10362 expclzaplem 10487 hashfiv01gt1 10703 fsum2dlemstep 11384 fprod2dlemstep 11572 sin02gt0 11713 qredeu 12038 prmdc 12071 lgslem3 13656 bj-stim 13740 bj-stan 13741 bj-stal 13743 bj-nfalt 13758 bj-indint 13926 tridceq 14048 |
Copyright terms: Public domain | W3C validator |