![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version |
Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
3imtr4.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imtr4i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imtr4.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylbi 121 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3imtr4.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: dcn 842 stdcn 847 dcan 933 xordc1 1393 hbxfrbi 1472 nfalt 1578 19.29r 1621 19.31r 1681 sbimi 1764 spsbbi 1844 sbi2v 1892 euan 2082 2exeu 2118 ralimi2 2537 reximi2 2573 r19.28av 2613 r19.29r 2615 elex 2750 rmoan 2939 rmoimi2 2942 sseq2 3181 rabss2 3240 unssdif 3372 inssdif 3373 unssin 3376 inssun 3377 rabn0r 3451 undif4 3487 ssdif0im 3489 inssdif0im 3492 ssundifim 3508 ralf0 3528 prmg 3715 difprsnss 3732 snsspw 3766 pwprss 3807 pwtpss 3808 uniin 3831 intss 3867 iuniin 3898 iuneq1 3901 iuneq2 3904 iundif2ss 3954 iinuniss 3971 iunpwss 3980 intexrabim 4155 exmidundif 4208 exmidundifim 4209 exss 4229 pwunss 4285 soeq2 4318 ordunisuc2r 4515 peano5 4599 reliin 4750 coeq1 4786 coeq2 4787 cnveq 4803 dmeq 4829 dmin 4837 dmcoss 4898 rncoeq 4902 resiexg 4954 dminss 5045 imainss 5046 dfco2a 5131 euiotaex 5196 eliotaeu 5207 fununi 5286 fof 5440 f1ocnv 5476 rexrnmpt 5661 isocnv 5814 isotr 5819 oprabid 5909 dmtpos 6259 tposfn 6276 smores 6295 eqer 6569 ixpeq2 6714 enssdom 6764 fiprc 6817 fiintim 6930 ltexprlemlol 7603 ltexprlemupu 7605 recexgt0 8539 peano2uz2 9362 eluzp1p1 9555 peano2uz 9585 zq 9628 ubmelfzo 10202 frecuzrdgtcl 10414 frecuzrdgfunlem 10421 expclzaplem 10546 hashfiv01gt1 10764 fsum2dlemstep 11444 fprod2dlemstep 11632 sin02gt0 11773 qredeu 12099 prmdc 12132 lgslem3 14442 bj-stim 14537 bj-stan 14538 bj-stal 14540 bj-nfalt 14555 bj-indint 14722 tridceq 14843 |
Copyright terms: Public domain | W3C validator |