| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 |
|
| 3imtr4.2 |
|
| 3imtr4.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 |
. . 3
| |
| 2 | 3imtr4.1 |
. . 3
| |
| 3 | 1, 2 | sylbi 121 |
. 2
|
| 4 | 3imtr4.3 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 847 stdcn 852 ifpdc 985 xordc1 1435 hbxfrbi 1518 nfalt 1624 19.29r 1667 19.31r 1727 sbimi 1810 spsbbi 1890 sbi2v 1939 euan 2134 2exeu 2170 ralimi2 2590 reximi2 2626 r19.28av 2667 r19.29r 2669 elex 2811 rmoan 3003 rmoimi2 3006 sseq2 3248 rabss2 3307 unssdif 3439 inssdif 3440 unssin 3443 inssun 3444 rabn0r 3518 undif4 3554 ssdif0im 3556 inssdif0im 3559 ssundifim 3575 ralf0 3594 prmg 3789 difprsnss 3806 snsspw 3842 pwprss 3884 pwtpss 3885 uniin 3908 intss 3944 iuniin 3975 iuneq1 3978 iuneq2 3981 iundif2ss 4031 iinuniss 4048 iunpwss 4057 intexrabim 4237 exmidundif 4290 exmidundifim 4291 exss 4313 pwunss 4374 soeq2 4407 ordunisuc2r 4606 peano5 4690 reliin 4841 coeq1 4879 coeq2 4880 cnveq 4896 dmeq 4923 dmin 4931 dmcoss 4994 rncoeq 4998 resiexg 5050 dminss 5143 imainss 5144 dfco2a 5229 euiotaex 5295 eliotaeu 5307 fundif 5365 fununi 5389 fof 5548 f1ocnv 5585 rexrnmpt 5778 isocnv 5935 isotr 5940 oprabid 6033 dmtpos 6402 tposfn 6419 smores 6438 eqer 6712 ixpeq2 6859 enssdom 6913 fiprc 6968 fiintim 7093 ltexprlemlol 7789 ltexprlemupu 7791 recexgt0 8727 peano2uz2 9554 eluzp1p1 9748 peano2uz 9778 zq 9821 ubmelfzo 10406 frecuzrdgtcl 10634 frecuzrdgfunlem 10641 expclzaplem 10785 hashfiv01gt1 11004 wrdeq 11093 fsum2dlemstep 11945 fprod2dlemstep 12133 sin02gt0 12275 qredeu 12619 prmdc 12652 subrngrng 14166 lgslem3 15681 bj-stim 16110 bj-stan 16111 bj-stal 16113 bj-nfalt 16128 bj-indint 16294 tridceq 16424 |
| Copyright terms: Public domain | W3C validator |