| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 |
|
| 3imtr4.2 |
|
| 3imtr4.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 |
. . 3
| |
| 2 | 3imtr4.1 |
. . 3
| |
| 3 | 1, 2 | sylbi 121 |
. 2
|
| 4 | 3imtr4.3 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 843 stdcn 848 xordc1 1404 hbxfrbi 1486 nfalt 1592 19.29r 1635 19.31r 1695 sbimi 1778 spsbbi 1858 sbi2v 1907 euan 2101 2exeu 2137 ralimi2 2557 reximi2 2593 r19.28av 2633 r19.29r 2635 elex 2774 rmoan 2964 rmoimi2 2967 sseq2 3208 rabss2 3267 unssdif 3399 inssdif 3400 unssin 3403 inssun 3404 rabn0r 3478 undif4 3514 ssdif0im 3516 inssdif0im 3519 ssundifim 3535 ralf0 3554 prmg 3744 difprsnss 3761 snsspw 3795 pwprss 3836 pwtpss 3837 uniin 3860 intss 3896 iuniin 3927 iuneq1 3930 iuneq2 3933 iundif2ss 3983 iinuniss 4000 iunpwss 4009 intexrabim 4187 exmidundif 4240 exmidundifim 4241 exss 4261 pwunss 4319 soeq2 4352 ordunisuc2r 4551 peano5 4635 reliin 4786 coeq1 4824 coeq2 4825 cnveq 4841 dmeq 4867 dmin 4875 dmcoss 4936 rncoeq 4940 resiexg 4992 dminss 5085 imainss 5086 dfco2a 5171 euiotaex 5236 eliotaeu 5248 fununi 5327 fof 5483 f1ocnv 5520 rexrnmpt 5708 isocnv 5861 isotr 5866 oprabid 5957 dmtpos 6323 tposfn 6340 smores 6359 eqer 6633 ixpeq2 6780 enssdom 6830 fiprc 6883 fiintim 7001 ltexprlemlol 7686 ltexprlemupu 7688 recexgt0 8624 peano2uz2 9450 eluzp1p1 9644 peano2uz 9674 zq 9717 ubmelfzo 10293 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 expclzaplem 10672 hashfiv01gt1 10891 wrdeq 10974 fsum2dlemstep 11616 fprod2dlemstep 11804 sin02gt0 11946 qredeu 12290 prmdc 12323 subrngrng 13834 lgslem3 15327 bj-stim 15476 bj-stan 15477 bj-stal 15479 bj-nfalt 15494 bj-indint 15661 tridceq 15787 |
| Copyright terms: Public domain | W3C validator |