| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 |
|
| 3imtr4.2 |
|
| 3imtr4.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 |
. . 3
| |
| 2 | 3imtr4.1 |
. . 3
| |
| 3 | 1, 2 | sylbi 121 |
. 2
|
| 4 | 3imtr4.3 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 844 stdcn 849 xordc1 1413 hbxfrbi 1496 nfalt 1602 19.29r 1645 19.31r 1705 sbimi 1788 spsbbi 1868 sbi2v 1917 euan 2112 2exeu 2148 ralimi2 2568 reximi2 2604 r19.28av 2644 r19.29r 2646 elex 2788 rmoan 2980 rmoimi2 2983 sseq2 3225 rabss2 3284 unssdif 3416 inssdif 3417 unssin 3420 inssun 3421 rabn0r 3495 undif4 3531 ssdif0im 3533 inssdif0im 3536 ssundifim 3552 ralf0 3571 prmg 3765 difprsnss 3782 snsspw 3818 pwprss 3860 pwtpss 3861 uniin 3884 intss 3920 iuniin 3951 iuneq1 3954 iuneq2 3957 iundif2ss 4007 iinuniss 4024 iunpwss 4033 intexrabim 4213 exmidundif 4266 exmidundifim 4267 exss 4289 pwunss 4348 soeq2 4381 ordunisuc2r 4580 peano5 4664 reliin 4815 coeq1 4853 coeq2 4854 cnveq 4870 dmeq 4897 dmin 4905 dmcoss 4967 rncoeq 4971 resiexg 5023 dminss 5116 imainss 5117 dfco2a 5202 euiotaex 5267 eliotaeu 5279 fundif 5337 fununi 5361 fof 5520 f1ocnv 5557 rexrnmpt 5746 isocnv 5903 isotr 5908 oprabid 5999 dmtpos 6365 tposfn 6382 smores 6401 eqer 6675 ixpeq2 6822 enssdom 6876 fiprc 6931 fiintim 7054 ltexprlemlol 7750 ltexprlemupu 7752 recexgt0 8688 peano2uz2 9515 eluzp1p1 9709 peano2uz 9739 zq 9782 ubmelfzo 10366 frecuzrdgtcl 10594 frecuzrdgfunlem 10601 expclzaplem 10745 hashfiv01gt1 10964 wrdeq 11053 fsum2dlemstep 11860 fprod2dlemstep 12048 sin02gt0 12190 qredeu 12534 prmdc 12567 subrngrng 14079 lgslem3 15594 bj-stim 15882 bj-stan 15883 bj-stal 15885 bj-nfalt 15900 bj-indint 16066 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |