| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4i | Unicode version | ||
| Description: A mixed syllogism inference, useful for applying a definition to both sides of an implication. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3imtr4.1 |
|
| 3imtr4.2 |
|
| 3imtr4.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4.2 |
. . 3
| |
| 2 | 3imtr4.1 |
. . 3
| |
| 3 | 1, 2 | sylbi 121 |
. 2
|
| 4 | 3imtr4.3 |
. 2
| |
| 5 | 3, 4 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: dcn 844 stdcn 849 xordc1 1413 hbxfrbi 1495 nfalt 1601 19.29r 1644 19.31r 1704 sbimi 1787 spsbbi 1867 sbi2v 1916 euan 2110 2exeu 2146 ralimi2 2566 reximi2 2602 r19.28av 2642 r19.29r 2644 elex 2783 rmoan 2973 rmoimi2 2976 sseq2 3217 rabss2 3276 unssdif 3408 inssdif 3409 unssin 3412 inssun 3413 rabn0r 3487 undif4 3523 ssdif0im 3525 inssdif0im 3528 ssundifim 3544 ralf0 3563 prmg 3754 difprsnss 3771 snsspw 3805 pwprss 3846 pwtpss 3847 uniin 3870 intss 3906 iuniin 3937 iuneq1 3940 iuneq2 3943 iundif2ss 3993 iinuniss 4010 iunpwss 4019 intexrabim 4198 exmidundif 4251 exmidundifim 4252 exss 4272 pwunss 4331 soeq2 4364 ordunisuc2r 4563 peano5 4647 reliin 4798 coeq1 4836 coeq2 4837 cnveq 4853 dmeq 4879 dmin 4887 dmcoss 4949 rncoeq 4953 resiexg 5005 dminss 5098 imainss 5099 dfco2a 5184 euiotaex 5249 eliotaeu 5261 fundif 5319 fununi 5343 fof 5500 f1ocnv 5537 rexrnmpt 5725 isocnv 5882 isotr 5887 oprabid 5978 dmtpos 6344 tposfn 6361 smores 6380 eqer 6654 ixpeq2 6801 enssdom 6855 fiprc 6909 fiintim 7030 ltexprlemlol 7717 ltexprlemupu 7719 recexgt0 8655 peano2uz2 9482 eluzp1p1 9676 peano2uz 9706 zq 9749 ubmelfzo 10331 frecuzrdgtcl 10559 frecuzrdgfunlem 10566 expclzaplem 10710 hashfiv01gt1 10929 wrdeq 11018 fsum2dlemstep 11778 fprod2dlemstep 11966 sin02gt0 12108 qredeu 12452 prmdc 12485 subrngrng 13997 lgslem3 15512 bj-stim 15719 bj-stan 15720 bj-stal 15722 bj-nfalt 15737 bj-indint 15904 tridceq 16032 |
| Copyright terms: Public domain | W3C validator |