Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stal Unicode version

Theorem bj-stal 12946
 Description: The universal quantification of stable formula is stable. See bj-stim 12943 for implication, stabnot 818 for negation, and bj-stan 12944 for conjunction. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-stal STAB STAB

Proof of Theorem bj-stal
StepHypRef Expression
1 bj-nnal 12938 . . 3
2 alim 1433 . . 3
31, 2syl5 32 . 2
4 df-stab 816 . . 3 STAB
54albii 1446 . 2 STAB
6 df-stab 816 . 2 STAB
73, 5, 63imtr4i 200 1 STAB STAB
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  STAB wstab 815  wal 1329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-4 1487  ax-17 1506  ax-ial 1514 This theorem depends on definitions:  df-bi 116  df-stab 816  df-tru 1334  df-fal 1337  df-nf 1437 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator