Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stal Unicode version

Theorem bj-stal 16137
Description: The universal quantification of a stable formula is stable. See bj-stim 16134 for implication, stabnot 838 for negation, and bj-stan 16135 for conjunction. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-stal  |-  ( A. xSTAB  ph 
-> STAB  A. x ph )

Proof of Theorem bj-stal
StepHypRef Expression
1 nnal 1695 . . 3  |-  ( -. 
-.  A. x ph  ->  A. x  -.  -.  ph )
2 alim 1503 . . 3  |-  ( A. x ( -.  -.  ph 
->  ph )  ->  ( A. x  -.  -.  ph  ->  A. x ph )
)
31, 2syl5 32 . 2  |-  ( A. x ( -.  -.  ph 
->  ph )  ->  ( -.  -.  A. x ph  ->  A. x ph )
)
4 df-stab 836 . . 3  |-  (STAB  ph  <->  ( -.  -.  ph  ->  ph ) )
54albii 1516 . 2  |-  ( A. xSTAB  ph  <->  A. x ( -.  -.  ph 
->  ph ) )
6 df-stab 836 . 2  |-  (STAB  A. x ph 
<->  ( -.  -.  A. x ph  ->  A. x ph ) )
73, 5, 63imtr4i 201 1  |-  ( A. xSTAB  ph 
-> STAB  A. x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 835   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-stab 836  df-tru 1398  df-fal 1401  df-nf 1507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator