| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-stal | Unicode version | ||
| Description: The universal quantification of a stable formula is stable. See bj-stim 16020 for implication, stabnot 837 for negation, and bj-stan 16021 for conjunction. (Contributed by BJ, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| bj-stal |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnal 1675 |
. . 3
| |
| 2 | alim 1483 |
. . 3
| |
| 3 | 1, 2 | syl5 32 |
. 2
|
| 4 | df-stab 835 |
. . 3
| |
| 5 | 4 | albii 1496 |
. 2
|
| 6 | df-stab 835 |
. 2
| |
| 7 | 3, 5, 6 | 3imtr4i 201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-tru 1378 df-fal 1381 df-nf 1487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |