Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-stal Unicode version

Theorem bj-stal 13128
Description: The universal quantification of stable formula is stable. See bj-stim 13125 for implication, stabnot 819 for negation, and bj-stan 13126 for conjunction. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-stal  |-  ( A. xSTAB  ph 
-> STAB  A. x ph )

Proof of Theorem bj-stal
StepHypRef Expression
1 bj-nnal 13120 . . 3  |-  ( -. 
-.  A. x ph  ->  A. x  -.  -.  ph )
2 alim 1434 . . 3  |-  ( A. x ( -.  -.  ph 
->  ph )  ->  ( A. x  -.  -.  ph  ->  A. x ph )
)
31, 2syl5 32 . 2  |-  ( A. x ( -.  -.  ph 
->  ph )  ->  ( -.  -.  A. x ph  ->  A. x ph )
)
4 df-stab 817 . . 3  |-  (STAB  ph  <->  ( -.  -.  ph  ->  ph ) )
54albii 1447 . 2  |-  ( A. xSTAB  ph  <->  A. x ( -.  -.  ph 
->  ph ) )
6 df-stab 817 . 2  |-  (STAB  A. x ph 
<->  ( -.  -.  A. x ph  ->  A. x ph ) )
73, 5, 63imtr4i 200 1  |-  ( A. xSTAB  ph 
-> STAB  A. x ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 816   A.wal 1330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-4 1488  ax-17 1507  ax-ial 1515
This theorem depends on definitions:  df-bi 116  df-stab 817  df-tru 1335  df-fal 1338  df-nf 1438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator