HomeHome Intuitionistic Logic Explorer
Theorem List (p. 147 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14601-14700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Syntaxclm 14601 Extend class notation with a function on topological spaces whose value is the convergence relation for limit sequences in the space.
 class  ~~> t
 
Definitiondf-cn 14602* Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 14611 for the predicate form. (Contributed by NM, 17-Oct-2006.)
 |- 
 Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j
 )  |  A. y  e.  k  ( `' f " y )  e.  j } )
 
Definitiondf-cnp 14603* Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.)
 |- 
 CnP  =  ( j  e.  Top ,  k  e. 
 Top  |->  ( x  e. 
 U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
 ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f " g
 )  C_  y )
 ) } ) )
 
Definitiondf-lm 14604* Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although  f is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function  ( x  e.  RR  |->  ( sin `  ( pi  x.  x ) ) ) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
 |-  ~~> t  =  ( j  e.  Top  |->  { <. f ,  x >.  |  ( f  e.  ( U. j  ^pm  CC )  /\  x  e. 
 U. j  /\  A. u  e.  j  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) }
 )
 
Theoremlmrcl 14605 Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
 |-  ( F ( ~~> t `  J ) P  ->  J  e.  Top )
 
Theoremlmfval 14606* The relation "sequence  f converges to point  y " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  ( ~~> t `  J )  =  { <. f ,  x >.  |  ( f  e.  ( X  ^pm  CC )  /\  x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ran  ZZ>= ( f  |`  y ) : y --> u ) ) } )
 
Theoremlmreltop 14607 The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.)
 |-  ( J  e.  Top  ->  Rel  ( ~~> t `  J ) )
 
Theoremcnfval 14608* The set of all continuous functions from topology  J to topology  K. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( J  Cn  K )  =  { f  e.  ( Y  ^m  X )  | 
 A. y  e.  K  ( `' f " y )  e.  J } )
 
Theoremcnpfval 14609* The function mapping the points in a topology  J to the set of all functions from  J to topology  K continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( J 
 CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y 
 ^m  X )  | 
 A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
 )  C_  w )
 ) } ) )
 
Theoremcnovex 14610 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K )  e.  _V )
 
Theoremiscn 14611* The predicate "the class  F is a continuous function from topology  J to topology  K". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
 
Theoremcnpval 14612* The set of all functions from topology  J to topology  K that are continuous at a point  P. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  ->  ( ( J 
 CnP  K ) `  P )  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x )  C_  y ) ) } )
 
Theoremiscnp 14613* The predicate "the class  F is a continuous function from topology  J to topology  K at point  P". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  K  ( ( F `
  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
 
Theoremiscn2 14614* The predicate "the class  F is a continuous function from topology  J to topology  K". Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
 
Theoremcntop1 14615 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
 
Theoremcntop2 14616 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
 
Theoremiscnp3 14617* The predicate "the class  F is a continuous function from topology  J to topology  K at point  P". (Contributed by NM, 15-May-2007.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  K  ( ( F `
  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  x  C_  ( `' F " y ) ) ) ) ) )
 
Theoremcnf 14618 A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
 
Theoremcnf2 14619 A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) ) 
 ->  F : X --> Y )
 
Theoremcnprcl2k 14620 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
 
Theoremcnpf2 14621 A continuous function at point  P is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
 ( J  CnP  K ) `  P ) ) 
 ->  F : X --> Y )
 
Theoremtgcn 14622* The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  =  ( topGen `  B )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
 
Theoremtgcnp 14623* The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  =  ( topGen `  B )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  P  e.  X )   =>    |-  ( ph  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X
 --> Y  /\  A. y  e.  B  ( ( F `
  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
 
Theoremssidcn 14624 The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  ->  ( (  _I  |`  X )  e.  ( J  Cn  K ) 
 <->  K  C_  J )
 )
 
Theoremicnpimaex 14625* Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
 |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  K  /\  ( F `  P )  e.  A ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) )
 
Theoremidcn 14626 A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
 
Theoremlmbr 14627* Express the binary relation "sequence  F converges to point  P " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition  F  C_  ( CC 
X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 14604. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
 
Theoremlmbr2 14628* Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
 
Theoremlmbrf 14629* Express the binary relation "sequence  F converges to point  P " in a metric space using an arbitrary upper set of integers. This version of lmbr2 14628 presupposes that  F is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  A )   =>    |-  ( ph  ->  ( F (
 ~~> t `  J ) P  <->  ( P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A  e.  u ) ) ) )
 
Theoremlmconst 14630 A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( J  e.  (TopOn `  X )  /\  P  e.  X  /\  M  e.  ZZ )  ->  ( Z  X.  { P } ) ( ~~> t `  J ) P )
 
Theoremlmcvg 14631* Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  P  e.  U )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F (
 ~~> t `  J ) P )   &    |-  ( ph  ->  U  e.  J )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
  k )  e.  U )
 
Theoremiscnp4 14632* The predicate "the class  F is a continuous function from topology  J to topology  K at point  P " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
 ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `  { ( F `
  P ) }
 ) E. x  e.  ( ( nei `  J ) `  { P }
 ) ( F " x )  C_  y ) ) )
 
Theoremcnpnei 14633* A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y ) 
 /\  A  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <->  A. y  e.  (
 ( nei `  K ) `  { ( F `  A ) } )
 ( `' F "
 y )  e.  (
 ( nei `  J ) `  { A } )
 ) )
 
Theoremcnima 14634 An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.)
 |-  ( ( F  e.  ( J  Cn  K ) 
 /\  A  e.  K )  ->  ( `' F " A )  e.  J )
 
Theoremcnco 14635 The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( F  e.  ( J  Cn  K ) 
 /\  G  e.  ( K  Cn  L ) ) 
 ->  ( G  o.  F )  e.  ( J  Cn  L ) )
 
Theoremcnptopco 14636 The composition of a function  F continuous at  P with a function continuous at  ( F `  P
) is continuous at  P. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
 |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  L  e.  Top )  /\  ( F  e.  (
 ( J  CnP  K ) `  P )  /\  G  e.  ( ( K  CnP  L ) `  ( F `  P ) ) ) )  ->  ( G  o.  F )  e.  ( ( J  CnP  L ) `  P ) )
 
Theoremcnclima 14637 A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( F  e.  ( J  Cn  K ) 
 /\  A  e.  ( Clsd `  K ) ) 
 ->  ( `' F " A )  e.  ( Clsd `  J ) )
 
Theoremcnntri 14638 Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  Y  =  U. K   =>    |-  (
 ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  ( `' F " ( ( int `  K ) `  S ) )  C_  ( ( int `  J ) `  ( `' F " S ) ) )
 
Theoremcnntr 14639* Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `  x ) )  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
 
Theoremcnss1 14640 If the topology  K is finer than  J, then there are more continuous functions from  K than from  J. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( J  Cn  L )  C_  ( K  Cn  L ) )
 
Theoremcnss2 14641 If the topology  K is finer than  J, then there are fewer continuous functions into  K than into  J from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  Y  =  U. K   =>    |-  (
 ( L  e.  (TopOn `  Y )  /\  L  C_  K )  ->  ( J  Cn  K )  C_  ( J  Cn  L ) )
 
Theoremcncnpi 14642 A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J  Cn  K )  /\  A  e.  X )  ->  F  e.  ( ( J  CnP  K ) `
  A ) )
 
Theoremcnsscnp 14643 The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( P  e.  X  ->  ( J  Cn  K ) 
 C_  ( ( J 
 CnP  K ) `  P ) )
 
Theoremcncnp 14644* A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X
 --> Y  /\  A. x  e.  X  F  e.  (
 ( J  CnP  K ) `  x ) ) ) )
 
Theoremcncnp2m 14645* A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X )  ->  ( F  e.  ( J  Cn  K )  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
 
Theoremcnnei 14646* Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y ) 
 ->  ( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  ( ( nei `  K ) `  { ( F `  p ) } ) E. v  e.  (
 ( nei `  J ) `  { p } )
 ( F " v
 )  C_  w )
 )
 
Theoremcnconst2 14647 A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
 
Theoremcnconst 14648 A constant function is continuous. (Contributed by FL, 15-Jan-2007.) (Proof shortened by Mario Carneiro, 19-Mar-2015.)
 |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( B  e.  Y  /\  F : X --> { B } ) )  ->  F  e.  ( J  Cn  K ) )
 
Theoremcnrest 14649 Continuity of a restriction from a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J  Cn  K )  /\  A  C_  X )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
 
Theoremcnrest2 14650 Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( K  e.  (TopOn `  Y )  /\  ran 
 F  C_  B  /\  B  C_  Y )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  B ) ) ) )
 
Theoremcnrest2r 14651 Equivalence of continuity in the parent topology and continuity in a subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.)
 |-  ( K  e.  Top  ->  ( J  Cn  ( Kt  B ) )  C_  ( J  Cn  K ) )
 
Theoremcnptopresti 14652 One direction of cnptoprest 14653 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon, 31-Mar-2023.)
 |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  Top )  /\  ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `
  P ) ) )  ->  ( F  |`  A )  e.  (
 ( ( Jt  A ) 
 CnP  K ) `  P ) )
 
Theoremcnptoprest 14653 Equivalence of continuity at a point and continuity of the restricted function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 5-Apr-2023.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  A  C_  X )  /\  ( P  e.  (
 ( int `  J ) `  A )  /\  F : X --> Y ) ) 
 ->  ( F  e.  (
 ( J  CnP  K ) `  P )  <->  ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P ) ) )
 
Theoremcnptoprest2 14654 Equivalence of point-continuity in the parent topology and point-continuity in a subspace. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> B  /\  B  C_  Y ) ) 
 ->  ( F  e.  (
 ( J  CnP  K ) `  P )  <->  F  e.  (
 ( J  CnP  ( Kt  B ) ) `  P ) ) )
 
Theoremcndis 14655 Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( A  e.  V  /\  J  e.  (TopOn `  X ) )  ->  ( ~P A  Cn  J )  =  ( X  ^m  A ) )
 
Theoremcnpdis 14656 If  A is an isolated point in  X (or equivalently, the singleton  { A } is open in  X), then every function is continuous at  A. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  { A }  e.  J )  ->  ( ( J 
 CnP  K ) `  A )  =  ( Y  ^m  X ) )
 
Theoremlmfpm 14657 If  F converges, then  F is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  F ( ~~> t `  J ) P ) 
 ->  F  e.  ( X 
 ^pm  CC ) )
 
Theoremlmfss 14658 Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  F ( ~~> t `  J ) P ) 
 ->  F  C_  ( CC  X.  X ) )
 
Theoremlmcl 14659 Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
 |-  ( ( J  e.  (TopOn `  X )  /\  F ( ~~> t `  J ) P ) 
 ->  P  e.  X )
 
Theoremlmss 14660 Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by Mario Carneiro, 30-Dec-2013.)
 |-  K  =  ( Jt  Y )   &    |-  Z  =  (
 ZZ>= `  M )   &    |-  ( ph  ->  Y  e.  V )   &    |-  ( ph  ->  J  e.  Top )   &    |-  ( ph  ->  P  e.  Y )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F : Z --> Y )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  F ( ~~> t `  K ) P ) )
 
Theoremsslm 14661 A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )  /\  J  C_  K )  ->  ( ~~> t `  K )  C_  ( ~~> t `  J ) )
 
Theoremlmres 14662 A function converges iff its restriction to an upper integers set converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  F  e.  ( X  ^pm  CC ) )   &    |-  ( ph  ->  M  e.  ZZ )   =>    |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  |`  ( ZZ>= `  M ) ) ( ~~> t `  J ) P ) )
 
Theoremlmff 14663* If  F converges, there is some upper integer set on which 
F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  dom  (
 ~~> t `  J ) )   =>    |-  ( ph  ->  E. j  e.  Z  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> X )
 
Theoremlmtopcnp 14664 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
 |-  ( ph  ->  F (
 ~~> t `  J ) P )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  G  e.  (
 ( J  CnP  K ) `  P ) )   =>    |-  ( ph  ->  ( G  o.  F ) ( ~~> t `  K ) ( G `
  P ) )
 
Theoremlmcn 14665 The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
 |-  ( ph  ->  F (
 ~~> t `  J ) P )   &    |-  ( ph  ->  G  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  ( G  o.  F ) ( ~~> t `  K ) ( G `  P ) )
 
9.1.8  Product topologies
 
Syntaxctx 14666 Extend class notation with the binary topological product operation.
 class  tX
 
Definitiondf-tx 14667* Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  tX  =  ( r  e.  _V ,  s  e. 
 _V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
 ) ) ) )
 
Theoremtxvalex 14668 Existence of the binary topological product. If  R and 
S are known to be topologies, see txtop 14674. (Contributed by Jim Kingdon, 3-Aug-2023.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S )  e.  _V )
 
Theoremtxval 14669* Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S )  =  ( topGen `
  B ) )
 
Theoremtxuni2 14670* The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   &    |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( X  X.  Y )  =  U. B
 
Theoremtxbasex 14671* The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  V  /\  S  e.  W )  ->  B  e.  _V )
 
Theoremtxbas 14672* The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  TopBases  /\  S  e.  TopBases )  ->  B  e.  TopBases )
 
Theoremeltx 14673* A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
 |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y )  /\  ( x  X.  y
 )  C_  S )
 ) )
 
Theoremtxtop 14674 The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S )  e.  Top )
 
Theoremtxtopi 14675 The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   =>    |-  ( R  tX  S )  e.  Top
 
Theoremtxtopon 14676 The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( R 
 tX  S )  e.  (TopOn `  ( X  X.  Y ) ) )
 
Theoremtxuni 14677 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y )  =  U. ( R 
 tX  S ) )
 
Theoremtxunii 14678 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   &    |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( X  X.  Y )  =  U. ( R 
 tX  S )
 
Theoremtxopn 14679 The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  R  /\  B  e.  S )
 )  ->  ( A  X.  B )  e.  ( R  tX  S ) )
 
Theoremtxss12 14680 Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( B  e.  V  /\  D  e.  W )  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ( A  tX  C ) 
 C_  ( B  tX  D ) )
 
Theoremtxbasval 14681 It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( ( topGen `  R )  tX  ( topGen `  S ) )  =  ( R  tX  S ) )
 
Theoremneitx 14682 The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  (
 ( nei `  K ) `  D ) ) ) 
 ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `  ( C  X.  D ) ) )
 
Theoremtx1cn 14683 Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  R ) )
 
Theoremtx2cn 14684 Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  S ) )
 
Theoremtxcnp 14685* If two functions are continuous at 
D, then the ordered pair of them is continuous at  D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( ( J  CnP  K ) `
  D ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( ( J  CnP  L ) `  D ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  (
 ( J  CnP  ( K  tX  L ) ) `
  D ) )
 
Theoremupxp 14686* Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  P  =  ( 1st  |`  ( B  X.  C ) )   &    |-  Q  =  ( 2nd  |`  ( B  X.  C ) )   =>    |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h ( h : A
 --> ( B  X.  C )  /\  F  =  ( P  o.  h ) 
 /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcnmpt 14687* A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  W  =  U. U   &    |-  H  =  ( x  e.  W  |->  <.
 ( F `  x ) ,  ( G `  x ) >. )   =>    |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S ) ) )
 
Theoremuptx 14688* Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  T  =  ( R 
 tX  S )   &    |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( F  e.  ( U  Cn  R ) 
 /\  G  e.  ( U  Cn  S ) ) 
 ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcn 14689 A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  W  =  U. U   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( R  e.  Top  /\  S  e.  Top  /\  F : W --> Z ) 
 ->  ( F  e.  ( U  Cn  ( R  tX  S ) )  <->  ( ( P  o.  F )  e.  ( U  Cn  R )  /\  ( Q  o.  F )  e.  ( U  Cn  S ) ) ) )
 
Theoremtxrest 14690 The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
 )  ->  ( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A )  tX  ( St  B ) ) )
 
Theoremtxdis 14691 The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX 
 ~P B )  =  ~P ( A  X.  B ) )
 
Theoremtxdis1cn 14692* A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  J  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  F  Fn  ( X  X.  Y ) )   &    |-  ( ( ph  /\  x  e.  X )  ->  (
 y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  F  e.  ( ( ~P X  tX  J )  Cn  K ) )
 
Theoremtxlm 14693* Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  H  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )   =>    |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. ) )
 
Theoremlmcn2 14694* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  ( ph  ->  F ( ~~> t `  J ) R )   &    |-  ( ph  ->  G ( ~~> t `  K ) S )   &    |-  ( ph  ->  O  e.  ( ( J 
 tX  K )  Cn  N ) )   &    |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )   =>    |-  ( ph  ->  H (
 ~~> t `  N ) ( R O S ) )
 
9.1.9  Continuous function-builders
 
Theoremcnmptid 14695* The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   =>    |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
 
Theoremcnmptc 14696* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  P  e.  Y )   =>    |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
 
Theoremcnmpt11 14697* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  ( y  e.  Y  |->  B )  e.  ( K  Cn  L ) )   &    |-  ( y  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
 
Theoremcnmpt11f 14698* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  F  e.  ( K  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( F `  A ) )  e.  ( J  Cn  L ) )
 
Theoremcnmpt1t 14699* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
 
Theoremcnmpt12f 14700* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( ( K 
 tX  L )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >