HomeHome Intuitionistic Logic Explorer
Theorem List (p. 147 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14601-14700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtxbasex 14601* The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  V  /\  S  e.  W )  ->  B  e.  _V )
 
Theoremtxbas 14602* The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )   =>    |-  ( ( R  e.  TopBases  /\  S  e.  TopBases )  ->  B  e.  TopBases )
 
Theoremeltx 14603* A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
 |-  ( ( J  e.  V  /\  K  e.  W )  ->  ( S  e.  ( J  tX  K )  <->  A. p  e.  S  E. x  e.  J  E. y  e.  K  ( p  e.  ( x  X.  y )  /\  ( x  X.  y
 )  C_  S )
 ) )
 
Theoremtxtop 14604 The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S )  e.  Top )
 
Theoremtxtopi 14605 The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   =>    |-  ( R  tX  S )  e.  Top
 
Theoremtxtopon 14606 The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( R 
 tX  S )  e.  (TopOn `  ( X  X.  Y ) ) )
 
Theoremtxuni 14607 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y )  =  U. ( R 
 tX  S ) )
 
Theoremtxunii 14608 The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010.)
 |-  R  e.  Top   &    |-  S  e.  Top   &    |-  X  =  U. R   &    |-  Y  =  U. S   =>    |-  ( X  X.  Y )  =  U. ( R 
 tX  S )
 
Theoremtxopn 14609 The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  R  /\  B  e.  S )
 )  ->  ( A  X.  B )  e.  ( R  tX  S ) )
 
Theoremtxss12 14610 Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( B  e.  V  /\  D  e.  W )  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ( A  tX  C ) 
 C_  ( B  tX  D ) )
 
Theoremtxbasval 14611 It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( ( topGen `  R )  tX  ( topGen `  S ) )  =  ( R  tX  S ) )
 
Theoremneitx 14612 The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  e.  ( ( nei `  J ) `  C )  /\  B  e.  (
 ( nei `  K ) `  D ) ) ) 
 ->  ( A  X.  B )  e.  ( ( nei `  ( J  tX  K ) ) `  ( C  X.  D ) ) )
 
Theoremtx1cn 14613 Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  R ) )
 
Theoremtx2cn 14614 Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  (
 ( R  tX  S )  Cn  S ) )
 
Theoremtxcnp 14615* If two functions are continuous at 
D, then the ordered pair of them is continuous at  D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  D  e.  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( ( J  CnP  K ) `
  D ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( ( J  CnP  L ) `  D ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  (
 ( J  CnP  ( K  tX  L ) ) `
  D ) )
 
Theoremupxp 14616* Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  P  =  ( 1st  |`  ( B  X.  C ) )   &    |-  Q  =  ( 2nd  |`  ( B  X.  C ) )   =>    |-  ( ( A  e.  D  /\  F : A --> B  /\  G : A --> C )  ->  E! h ( h : A
 --> ( B  X.  C )  /\  F  =  ( P  o.  h ) 
 /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcnmpt 14617* A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  W  =  U. U   &    |-  H  =  ( x  e.  W  |->  <.
 ( F `  x ) ,  ( G `  x ) >. )   =>    |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S ) ) )
 
Theoremuptx 14618* Universal property of the binary topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  T  =  ( R 
 tX  S )   &    |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( F  e.  ( U  Cn  R ) 
 /\  G  e.  ( U  Cn  S ) ) 
 ->  E! h  e.  ( U  Cn  T ) ( F  =  ( P  o.  h )  /\  G  =  ( Q  o.  h ) ) )
 
Theoremtxcn 14619 A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. R   &    |-  Y  =  U. S   &    |-  Z  =  ( X  X.  Y )   &    |-  W  =  U. U   &    |-  P  =  ( 1st  |`  Z )   &    |-  Q  =  ( 2nd  |`  Z )   =>    |-  ( ( R  e.  Top  /\  S  e.  Top  /\  F : W --> Z ) 
 ->  ( F  e.  ( U  Cn  ( R  tX  S ) )  <->  ( ( P  o.  F )  e.  ( U  Cn  R )  /\  ( Q  o.  F )  e.  ( U  Cn  S ) ) ) )
 
Theoremtxrest 14620 The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
 )  ->  ( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A )  tX  ( St  B ) ) )
 
Theoremtxdis 14621 The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX 
 ~P B )  =  ~P ( A  X.  B ) )
 
Theoremtxdis1cn 14622* A function is jointly continuous on a discrete left topology iff it is continuous as a function of its right argument, for each fixed left value. (Contributed by Mario Carneiro, 19-Sep-2015.)
 |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  J  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  K  e.  Top )   &    |-  ( ph  ->  F  Fn  ( X  X.  Y ) )   &    |-  ( ( ph  /\  x  e.  X )  ->  (
 y  e.  Y  |->  ( x F y ) )  e.  ( J  Cn  K ) )   =>    |-  ( ph  ->  F  e.  ( ( ~P X  tX  J )  Cn  K ) )
 
Theoremtxlm 14623* Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  H  =  ( n  e.  Z  |->  <. ( F `  n ) ,  ( G `  n ) >. )   =>    |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. ) )
 
Theoremlmcn2 14624* The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  F : Z --> X )   &    |-  ( ph  ->  G : Z --> Y )   &    |-  ( ph  ->  F ( ~~> t `  J ) R )   &    |-  ( ph  ->  G ( ~~> t `  K ) S )   &    |-  ( ph  ->  O  e.  ( ( J 
 tX  K )  Cn  N ) )   &    |-  H  =  ( n  e.  Z  |->  ( ( F `  n ) O ( G `  n ) ) )   =>    |-  ( ph  ->  H (
 ~~> t `  N ) ( R O S ) )
 
9.1.9  Continuous function-builders
 
Theoremcnmptid 14625* The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   =>    |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
 
Theoremcnmptc 14626* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  P  e.  Y )   =>    |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
 
Theoremcnmpt11 14627* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  ( y  e.  Y  |->  B )  e.  ( K  Cn  L ) )   &    |-  ( y  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
 
Theoremcnmpt11f 14628* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  F  e.  ( K  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( F `  A ) )  e.  ( J  Cn  L ) )
 
Theoremcnmpt1t 14629* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  <. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
 
Theoremcnmpt12f 14630* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( ( K 
 tX  L )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( J  Cn  M ) )
 
Theoremcnmpt12 14631* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )   &    |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )   &    |-  ( ph  ->  K  e.  (TopOn `  Y ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  ( y  e.  Y ,  z  e.  Z  |->  C )  e.  ( ( K 
 tX  L )  Cn  M ) )   &    |-  (
 ( y  =  A  /\  z  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  X  |->  D )  e.  ( J  Cn  M ) )
 
Theoremcnmpt1st 14632* The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J 
 tX  K )  Cn  J ) )
 
Theoremcnmpt2nd 14633* The projection onto the second coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J 
 tX  K )  Cn  K ) )
 
Theoremcnmpt2c 14634* A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  L  e.  (TopOn `  Z )
 )   &    |-  ( ph  ->  P  e.  Z )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J 
 tX  K )  Cn  L ) )
 
Theoremcnmpt21 14635* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )   &    |-  ( z  =  A  ->  B  =  C )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  C )  e.  ( ( J 
 tX  K )  Cn  M ) )
 
Theoremcnmpt21f 14636* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  F  e.  ( L  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  A ) )  e.  ( ( J  tX  K )  Cn  M ) )
 
Theoremcnmpt2t 14637* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. A ,  B >. )  e.  (
 ( J  tX  K )  Cn  ( L  tX  M ) ) )
 
Theoremcnmpt22 14638* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   &    |-  ( ph  ->  L  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  M  e.  (TopOn `  W ) )   &    |-  ( ph  ->  ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L 
 tX  M )  Cn  N ) )   &    |-  (
 ( z  =  A  /\  w  =  B )  ->  C  =  D )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  D )  e.  ( ( J 
 tX  K )  Cn  N ) )
 
Theoremcnmpt22f 14639* The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M ) )   &    |-  ( ph  ->  F  e.  ( ( L 
 tX  M )  Cn  N ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J 
 tX  K )  Cn  N ) )
 
Theoremcnmpt1res 14640* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014.)
 |-  K  =  ( Jt  Y )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  Y  |->  A )  e.  ( K  Cn  L ) )
 
Theoremcnmpt2res 14641* The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  K  =  ( Jt  Y )   &    |-  ( ph  ->  J  e.  (TopOn `  X ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  N  =  ( Mt  W )   &    |-  ( ph  ->  M  e.  (TopOn `  Z ) )   &    |-  ( ph  ->  W 
 C_  Z )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M )  Cn  L ) )   =>    |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K 
 tX  N )  Cn  L ) )
 
Theoremcnmptcom 14642* The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( ph  ->  J  e.  (TopOn `  X )
 )   &    |-  ( ph  ->  K  e.  (TopOn `  Y )
 )   &    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J 
 tX  K )  Cn  L ) )   =>    |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K 
 tX  J )  Cn  L ) )
 
Theoremimasnopn 14643 If a relation graph is open, then an image set of a singleton is also open. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  K  e.  Top )  /\  ( R  e.  ( J  tX  K )  /\  A  e.  X )
 )  ->  ( R " { A } )  e.  K )
 
9.1.10  Homeomorphisms
 
Syntaxchmeo 14644 Extend class notation with the class of all homeomorphisms.
 class  Homeo
 
Definitiondf-hmeo 14645* Function returning all the homeomorphisms from topology  j to topology  k. (Contributed by FL, 14-Feb-2007.)
 |- 
 Homeo  =  ( j  e.  Top ,  k  e. 
 Top  |->  { f  e.  (
 j  Cn  k )  |  `' f  e.  (
 k  Cn  j ) } )
 
Theoremhmeofn 14646 The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |- 
 Homeo  Fn  ( Top  X.  Top )
 
Theoremhmeofvalg 14647* The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J Homeo K )  =  { f  e.  ( J  Cn  K )  |  `' f  e.  ( K  Cn  J ) } )
 
Theoremishmeo 14648 The predicate F is a homeomorphism between topology  J and topology  K. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K ) 
 /\  `' F  e.  ( K  Cn  J ) ) )
 
Theoremhmeocn 14649 A homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  F  e.  ( J  Cn  K ) )
 
Theoremhmeocnvcn 14650 The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K  Cn  J ) )
 
Theoremhmeocnv 14651 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( F  e.  ( J Homeo K )  ->  `' F  e.  ( K Homeo J ) )
 
Theoremhmeof1o2 14652 A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J Homeo K ) ) 
 ->  F : X -1-1-onto-> Y )
 
Theoremhmeof1o 14653 A homeomorphism is a 1-1-onto mapping. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( F  e.  ( J Homeo K )  ->  F : X -1-1-onto-> Y )
 
Theoremhmeoima 14654 The image of an open set by a homeomorphism is an open set. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  A  e.  J )  ->  ( F " A )  e.  K )
 
Theoremhmeoopn 14655 Homeomorphisms preserve openness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  J  <->  ( F " A )  e.  K ) )
 
Theoremhmeocld 14656 Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  ( F " A )  e.  ( Clsd `  K ) ) )
 
Theoremhmeontr 14657 Homeomorphisms preserve interiors. (Contributed by Mario Carneiro, 25-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  A  C_  X )  ->  ( ( int `  K ) `  ( F " A ) )  =  ( F " (
 ( int `  J ) `  A ) ) )
 
Theoremhmeoimaf1o 14658* The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
 |-  G  =  ( x  e.  J  |->  ( F
 " x ) )   =>    |-  ( F  e.  ( J Homeo K )  ->  G : J -1-1-onto-> K )
 
Theoremhmeores 14659 The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( F  e.  ( J Homeo K )  /\  Y  C_  X )  ->  ( F  |`  Y )  e.  ( ( Jt  Y ) Homeo ( Kt  ( F
 " Y ) ) ) )
 
Theoremhmeoco 14660 The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( F  e.  ( J Homeo K )  /\  G  e.  ( K Homeo L ) )  ->  ( G  o.  F )  e.  ( J Homeo L ) )
 
Theoremidhmeo 14661 The identity function is a homeomorphism. (Contributed by FL, 14-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  (  _I  |`  X )  e.  ( J Homeo J ) )
 
Theoremhmeocnvb 14662 The converse of a homeomorphism is a homeomorphism. (Contributed by FL, 5-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
 |-  ( Rel  F  ->  ( `' F  e.  ( J Homeo K )  <->  F  e.  ( K Homeo J ) ) )
 
Theoremtxhmeo 14663* Lift a pair of homeomorphisms on the factors to a homeomorphism of product topologies. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   &    |-  ( ph  ->  F  e.  ( J Homeo L ) )   &    |-  ( ph  ->  G  e.  ( K Homeo M ) )   =>    |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  <. ( F `
  x ) ,  ( G `  y
 ) >. )  e.  (
 ( J  tX  K ) Homeo ( L  tX  M ) ) )
 
Theoremtxswaphmeolem 14664* Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
 
Theoremtxswaphmeo 14665* There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) Homeo ( K  tX  J ) ) )
 
9.2  Metric spaces
 
9.2.1  Pseudometric spaces
 
Theorempsmetrel 14666 The class of pseudometrics is a relation. (Contributed by Jim Kingdon, 24-Apr-2023.)
 |- 
 Rel PsMet
 
Theoremispsmet 14667* Express the predicate " D is a pseudometric". (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( X  e.  V  ->  ( D  e.  (PsMet `  X )  <->  ( D :
 ( X  X.  X )
 --> RR*  /\  A. x  e.  X  ( ( x D x )  =  0  /\  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theorempsmetdmdm 14668 Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  X  =  dom  dom  D )
 
Theorempsmetf 14669 The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theorempsmetcl 14670 Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR* )
 
Theorempsmet0 14671 The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X )  ->  ( A D A )  =  0 )
 
Theorempsmettri2 14672 Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
 )  ->  ( A D B )  <_  (
 ( C D A ) +e ( C D B ) ) )
 
Theorempsmetsym 14673 The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( B D A ) )
 
Theorempsmettri 14674 Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
 )  ->  ( A D B )  <_  (
 ( A D C ) +e ( C D B ) ) )
 
Theorempsmetge0 14675 The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) (Revised by Jim Kingdon, 19-Apr-2023.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  0  <_  ( A D B ) )
 
Theorempsmetxrge0 14676 The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.)
 |-  ( D  e.  (PsMet `  X )  ->  D : ( X  X.  X ) --> ( 0 [,] +oo ) )
 
Theorempsmetres2 14677 Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  R  C_  X )  ->  ( D  |`  ( R  X.  R ) )  e.  (PsMet `  R ) )
 
Theorempsmetlecl 14678 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.)
 |-  ( ( D  e.  (PsMet `  X )  /\  ( A  e.  X  /\  B  e.  X ) 
 /\  ( C  e.  RR  /\  ( A D B )  <_  C ) )  ->  ( A D B )  e.  RR )
 
Theoremdistspace 14679 A set  X together with a (distance) function  D which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set  X equipped with a distance  D, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.)
 |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( ( D :
 ( X  X.  X )
 --> RR*  /\  ( A D A )  =  0 )  /\  ( 0 
 <_  ( A D B )  /\  ( A D B )  =  ( B D A ) ) ) )
 
9.2.2  Basic metric space properties
 
Syntaxcxms 14680 Extend class notation with the class of extended metric spaces.
 class  *MetSp
 
Syntaxcms 14681 Extend class notation with the class of metric spaces.
 class  MetSp
 
Syntaxctms 14682 Extend class notation with the function mapping a metric to the metric space it defines.
 class toMetSp
 
Definitiondf-xms 14683 Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 *MetSp  =  { f  e.  TopSp  |  ( TopOpen `  f )  =  ( MetOpen `  ( ( dist `  f
 )  |`  ( ( Base `  f )  X.  ( Base `  f ) ) ) ) }
 
Definitiondf-ms 14684 Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.)
 |- 
 MetSp  =  { f  e.  *MetSp  |  (
 ( dist `  f )  |`  ( ( Base `  f
 )  X.  ( Base `  f ) ) )  e.  ( Met `  ( Base `  f ) ) }
 
Definitiondf-tms 14685 Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- toMetSp  =  ( d  e.  U. ran  *Met  |->  ( { <. ( Base `  ndx ) , 
 dom  dom  d >. ,  <. (
 dist `  ndx ) ,  d >. } sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  d ) >. ) )
 
Theoremmetrel 14686 The class of metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  Met
 
Theoremxmetrel 14687 The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
 |- 
 Rel  *Met
 
Theoremismet 14688* Express the predicate " D is a metric". (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D :
 ( X  X.  X )
 --> RR  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
 )  /\  A. z  e.  X  ( x D y )  <_  (
 ( z D x )  +  ( z D y ) ) ) ) ) )
 
Theoremisxmet 14689* Express the predicate " D is an extended metric". (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( X  e.  A  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
 )  /\  A. z  e.  X  ( x D y )  <_  (
 ( z D x ) +e ( z D y ) ) ) ) ) )
 
Theoremismeti 14690* Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  X  e.  _V   &    |-  D : ( X  X.  X ) --> RR   &    |-  (
 ( x  e.  X  /\  y  e.  X )  ->  ( ( x D y )  =  0  <->  x  =  y
 ) )   &    |-  ( ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  ->  ( x D y )  <_  ( ( z D x )  +  (
 z D y ) ) )   =>    |-  D  e.  ( Met `  X )
 
Theoremisxmetd 14691* Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  D : ( X  X.  X ) --> RR* )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  ( ( x D y )  =  0  <-> 
 x  =  y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x D y )  <_  ( ( z D x ) +e
 ( z D y ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  X ) )
 
Theoremisxmet2d 14692* It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample:  D ( x ,  y )  =  if ( x  =  y ,  0 , -oo ) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ph  ->  X  e.  _V )   &    |-  ( ph  ->  D : ( X  X.  X ) --> RR* )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
 0  <_  ( x D y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X )
 )  ->  ( ( x D y )  <_ 
 0 
 <->  x  =  y ) )   &    |-  ( ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X )  /\  ( ( z D x )  e. 
 RR  /\  ( z D y )  e. 
 RR ) )  ->  ( x D y ) 
 <_  ( ( z D x )  +  (
 z D y ) ) )   =>    |-  ( ph  ->  D  e.  ( *Met `  X ) )
 
Theoremmetflem 14693* Lemma for metf 14695 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
 ( ( x D y )  =  0  <-> 
 x  =  y ) 
 /\  A. z  e.  X  ( x D y ) 
 <_  ( ( z D x )  +  (
 z D y ) ) ) ) )
 
Theoremxmetf 14694 Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
 
Theoremmetf 14695 Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.)
 |-  ( D  e.  ( Met `  X )  ->  D : ( X  X.  X ) --> RR )
 
Theoremxmetcl 14696 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( A D B )  e.  RR* )
 
Theoremmetcl 14697 Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
 |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
 
Theoremismet2 14698 An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
 
Theoremmetxmet 14699 A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( D  e.  ( Met `  X )  ->  D  e.  ( *Met `  X ) )
 
Theoremxmetdmdm 14700 Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15841
  Copyright terms: Public domain < Previous  Next >