Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-trdc Unicode version

Theorem bj-trdc 13787
Description: A provable formula is decidable. (Contributed by BJ, 24-Nov-2023.)
Assertion
Ref Expression
bj-trdc  |-  ( ph  -> DECID  ph )

Proof of Theorem bj-trdc
StepHypRef Expression
1 orc 707 . 2  |-  ( ph  ->  ( ph  \/  -.  ph ) )
2 df-dc 830 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
31, 2sylibr 133 1  |-  ( ph  -> DECID  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 703  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830
This theorem is referenced by:  bj-dctru  13788  bj-nnbidc  13792
  Copyright terms: Public domain W3C validator