Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orc | Unicode version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | jaob 700 | . . 3 | |
3 | 1, 2 | mpbi 144 | . 2 |
4 | 3 | simpli 110 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.67-2 703 pm1.4 717 orci 721 orcd 723 orcs 725 pm2.45 728 biorfi 736 pm1.5 755 pm2.4 768 pm4.44 769 pm4.78i 772 pm4.45 774 pm3.48 775 pm2.76 798 orabs 804 ordi 806 andi 808 pm4.72 817 biort 819 dcim 831 pm2.54dc 881 pm2.85dc 895 dcor 925 pm5.71dc 951 dedlema 959 3mix1 1156 xoranor 1367 19.33 1472 hbor 1534 nford 1555 19.30dc 1615 19.43 1616 19.32r 1668 moor 2085 r19.32r 2611 ssun1 3284 undif3ss 3382 reuun1 3403 prmg 3696 opthpr 3751 exmidn0m 4179 issod 4296 elelsuc 4386 ordtri2or2exmidlem 4502 regexmidlem1 4509 nndceq 6463 nndcel 6464 swoord1 6526 swoord2 6527 exmidontri2or 7195 addlocprlem 7472 msqge0 8510 mulge0 8513 ltleap 8526 nn1m1nn 8871 elnnz 9197 zletric 9231 zlelttric 9232 zmulcl 9240 zdceq 9262 zdcle 9263 zdclt 9264 ltpnf 9712 xrlttri3 9729 xrpnfdc 9774 xrmnfdc 9775 fzdcel 9971 qletric 10175 qlelttric 10176 qdceq 10178 qsqeqor 10561 hashfiv01gt1 10691 isum 11322 iprodap 11517 iprodap0 11519 nn0o1gt2 11838 prm23lt5 12191 bj-trdc 13593 bj-nn0suc0 13792 triap 13868 tridceq 13895 |
Copyright terms: Public domain | W3C validator |