| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | Unicode version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 715 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpli 111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 718 pm1.4 732 orci 736 orcd 738 orcs 740 pm2.45 743 biorfi 751 pm1.5 770 pm2.4 783 pm4.44 784 pm4.78i 787 pm4.45 789 pm3.48 790 pm2.76 813 orabs 819 ordi 821 andi 823 pm4.72 832 biort 834 dcim 846 pm2.54dc 896 pm2.85dc 910 dcor 941 pm5.71dc 967 dedlema 975 3mix1 1190 xoranor 1419 19.33 1530 hbor 1592 nford 1613 19.30dc 1673 19.43 1674 19.32r 1726 moor 2149 r19.32r 2677 ssun1 3367 undif3ss 3465 reuun1 3486 prmg 3788 opthpr 3849 exmidn0m 4284 issod 4409 elelsuc 4499 ordtri2or2exmidlem 4617 regexmidlem1 4624 fununmo 5362 nndceq 6643 nndcel 6644 swoord1 6707 swoord2 6708 exmidontri2or 7424 addlocprlem 7718 msqge0 8759 mulge0 8762 ltleap 8775 nn1m1nn 9124 elnnz 9452 zletric 9486 zlelttric 9487 zmulcl 9496 zdceq 9518 zdcle 9519 zdclt 9520 ltpnf 9972 xrlttri3 9989 xrpnfdc 10034 xrmnfdc 10035 fzdcel 10232 qletric 10456 qlelttric 10457 qdceq 10459 qdclt 10460 qsqeqor 10867 hashfiv01gt1 10999 isum 11891 iprodap 12086 iprodap0 12088 nn0o1gt2 12411 prm23lt5 12781 4sqlem17 12925 gausslemma2dlem0f 15727 bj-trdc 16074 bj-nn0suc0 16271 triap 16356 tridceq 16383 |
| Copyright terms: Public domain | W3C validator |