| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > orc | Unicode version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| orc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | 
. . 3
 | |
| 2 | jaob 711 | 
. . 3
 | |
| 3 | 1, 2 | mpbi 145 | 
. 2
 | 
| 4 | 3 | simpli 111 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm2.67-2 714 pm1.4 728 orci 732 orcd 734 orcs 736 pm2.45 739 biorfi 747 pm1.5 766 pm2.4 779 pm4.44 780 pm4.78i 783 pm4.45 785 pm3.48 786 pm2.76 809 orabs 815 ordi 817 andi 819 pm4.72 828 biort 830 dcim 842 pm2.54dc 892 pm2.85dc 906 dcor 937 pm5.71dc 963 dedlema 971 3mix1 1168 xoranor 1388 19.33 1498 hbor 1560 nford 1581 19.30dc 1641 19.43 1642 19.32r 1694 moor 2116 r19.32r 2643 ssun1 3326 undif3ss 3424 reuun1 3445 prmg 3743 opthpr 3802 exmidn0m 4234 issod 4354 elelsuc 4444 ordtri2or2exmidlem 4562 regexmidlem1 4569 nndceq 6557 nndcel 6558 swoord1 6621 swoord2 6622 exmidontri2or 7310 addlocprlem 7602 msqge0 8643 mulge0 8646 ltleap 8659 nn1m1nn 9008 elnnz 9336 zletric 9370 zlelttric 9371 zmulcl 9379 zdceq 9401 zdcle 9402 zdclt 9403 ltpnf 9855 xrlttri3 9872 xrpnfdc 9917 xrmnfdc 9918 fzdcel 10115 qletric 10331 qlelttric 10332 qdceq 10334 qdclt 10335 qsqeqor 10742 hashfiv01gt1 10874 isum 11550 iprodap 11745 iprodap0 11747 nn0o1gt2 12070 prm23lt5 12432 4sqlem17 12576 gausslemma2dlem0f 15295 bj-trdc 15398 bj-nn0suc0 15596 triap 15673 tridceq 15700 | 
| Copyright terms: Public domain | W3C validator |