![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orc | Unicode version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | jaob 710 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | simpli 111 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.67-2 713 pm1.4 727 orci 731 orcd 733 orcs 735 pm2.45 738 biorfi 746 pm1.5 765 pm2.4 778 pm4.44 779 pm4.78i 782 pm4.45 784 pm3.48 785 pm2.76 808 orabs 814 ordi 816 andi 818 pm4.72 827 biort 829 dcim 841 pm2.54dc 891 pm2.85dc 905 dcor 935 pm5.71dc 961 dedlema 969 3mix1 1166 xoranor 1377 19.33 1484 hbor 1546 nford 1567 19.30dc 1627 19.43 1628 19.32r 1680 moor 2097 r19.32r 2623 ssun1 3300 undif3ss 3398 reuun1 3419 prmg 3715 opthpr 3774 exmidn0m 4203 issod 4321 elelsuc 4411 ordtri2or2exmidlem 4527 regexmidlem1 4534 nndceq 6502 nndcel 6503 swoord1 6566 swoord2 6567 exmidontri2or 7244 addlocprlem 7536 msqge0 8575 mulge0 8578 ltleap 8591 nn1m1nn 8939 elnnz 9265 zletric 9299 zlelttric 9300 zmulcl 9308 zdceq 9330 zdcle 9331 zdclt 9332 ltpnf 9782 xrlttri3 9799 xrpnfdc 9844 xrmnfdc 9845 fzdcel 10042 qletric 10246 qlelttric 10247 qdceq 10249 qsqeqor 10633 hashfiv01gt1 10764 isum 11395 iprodap 11590 iprodap0 11592 nn0o1gt2 11912 prm23lt5 12265 bj-trdc 14589 bj-nn0suc0 14787 triap 14862 tridceq 14889 |
Copyright terms: Public domain | W3C validator |