| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | Unicode version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 712 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpli 111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 715 pm1.4 729 orci 733 orcd 735 orcs 737 pm2.45 740 biorfi 748 pm1.5 767 pm2.4 780 pm4.44 781 pm4.78i 784 pm4.45 786 pm3.48 787 pm2.76 810 orabs 816 ordi 818 andi 820 pm4.72 829 biort 831 dcim 843 pm2.54dc 893 pm2.85dc 907 dcor 938 pm5.71dc 964 dedlema 972 3mix1 1169 xoranor 1397 19.33 1508 hbor 1570 nford 1591 19.30dc 1651 19.43 1652 19.32r 1704 moor 2127 r19.32r 2654 ssun1 3344 undif3ss 3442 reuun1 3463 prmg 3765 opthpr 3826 exmidn0m 4261 issod 4384 elelsuc 4474 ordtri2or2exmidlem 4592 regexmidlem1 4599 fununmo 5335 nndceq 6608 nndcel 6609 swoord1 6672 swoord2 6673 exmidontri2or 7389 addlocprlem 7683 msqge0 8724 mulge0 8727 ltleap 8740 nn1m1nn 9089 elnnz 9417 zletric 9451 zlelttric 9452 zmulcl 9461 zdceq 9483 zdcle 9484 zdclt 9485 ltpnf 9937 xrlttri3 9954 xrpnfdc 9999 xrmnfdc 10000 fzdcel 10197 qletric 10421 qlelttric 10422 qdceq 10424 qdclt 10425 qsqeqor 10832 hashfiv01gt1 10964 isum 11811 iprodap 12006 iprodap0 12008 nn0o1gt2 12331 prm23lt5 12701 4sqlem17 12845 gausslemma2dlem0f 15646 bj-trdc 15888 bj-nn0suc0 16085 triap 16170 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |