| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | Unicode version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 712 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpli 111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 715 pm1.4 729 orci 733 orcd 735 orcs 737 pm2.45 740 biorfi 748 pm1.5 767 pm2.4 780 pm4.44 781 pm4.78i 784 pm4.45 786 pm3.48 787 pm2.76 810 orabs 816 ordi 818 andi 820 pm4.72 829 biort 831 dcim 843 pm2.54dc 893 pm2.85dc 907 dcor 938 pm5.71dc 964 dedlema 972 3mix1 1169 xoranor 1397 19.33 1507 hbor 1569 nford 1590 19.30dc 1650 19.43 1651 19.32r 1703 moor 2125 r19.32r 2652 ssun1 3336 undif3ss 3434 reuun1 3455 prmg 3754 opthpr 3813 exmidn0m 4245 issod 4366 elelsuc 4456 ordtri2or2exmidlem 4574 regexmidlem1 4581 fununmo 5316 nndceq 6585 nndcel 6586 swoord1 6649 swoord2 6650 exmidontri2or 7355 addlocprlem 7648 msqge0 8689 mulge0 8692 ltleap 8705 nn1m1nn 9054 elnnz 9382 zletric 9416 zlelttric 9417 zmulcl 9426 zdceq 9448 zdcle 9449 zdclt 9450 ltpnf 9902 xrlttri3 9919 xrpnfdc 9964 xrmnfdc 9965 fzdcel 10162 qletric 10384 qlelttric 10385 qdceq 10387 qdclt 10388 qsqeqor 10795 hashfiv01gt1 10927 isum 11696 iprodap 11891 iprodap0 11893 nn0o1gt2 12216 prm23lt5 12586 4sqlem17 12730 gausslemma2dlem0f 15531 bj-trdc 15688 bj-nn0suc0 15886 triap 15968 tridceq 15995 |
| Copyright terms: Public domain | W3C validator |