| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | Unicode version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | jaob 711 |
. . 3
| |
| 3 | 1, 2 | mpbi 145 |
. 2
|
| 4 | 3 | simpli 111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 714 pm1.4 728 orci 732 orcd 734 orcs 736 pm2.45 739 biorfi 747 pm1.5 766 pm2.4 779 pm4.44 780 pm4.78i 783 pm4.45 785 pm3.48 786 pm2.76 809 orabs 815 ordi 817 andi 819 pm4.72 828 biort 830 dcim 842 pm2.54dc 892 pm2.85dc 906 dcor 937 pm5.71dc 963 dedlema 971 3mix1 1168 xoranor 1388 19.33 1498 hbor 1560 nford 1581 19.30dc 1641 19.43 1642 19.32r 1694 moor 2116 r19.32r 2643 ssun1 3327 undif3ss 3425 reuun1 3446 prmg 3744 opthpr 3803 exmidn0m 4235 issod 4355 elelsuc 4445 ordtri2or2exmidlem 4563 regexmidlem1 4570 nndceq 6566 nndcel 6567 swoord1 6630 swoord2 6631 exmidontri2or 7326 addlocprlem 7619 msqge0 8660 mulge0 8663 ltleap 8676 nn1m1nn 9025 elnnz 9353 zletric 9387 zlelttric 9388 zmulcl 9396 zdceq 9418 zdcle 9419 zdclt 9420 ltpnf 9872 xrlttri3 9889 xrpnfdc 9934 xrmnfdc 9935 fzdcel 10132 qletric 10348 qlelttric 10349 qdceq 10351 qdclt 10352 qsqeqor 10759 hashfiv01gt1 10891 isum 11567 iprodap 11762 iprodap0 11764 nn0o1gt2 12087 prm23lt5 12457 4sqlem17 12601 gausslemma2dlem0f 15379 bj-trdc 15482 bj-nn0suc0 15680 triap 15760 tridceq 15787 |
| Copyright terms: Public domain | W3C validator |