Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-con1st Unicode version

Theorem bj-con1st 13786
Description: Contraposition when the antecedent is a negated stable proposition. See con1dc 851. (Contributed by BJ, 11-Nov-2024.)
Assertion
Ref Expression
bj-con1st  |-  (STAB  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )

Proof of Theorem bj-con1st
StepHypRef Expression
1 con3 637 . 2  |-  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  -. 
-.  ph ) )
2 df-stab 826 . . 3  |-  (STAB  ph  <->  ( -.  -.  ph  ->  ph ) )
32biimpi 119 . 2  |-  (STAB  ph  ->  ( -.  -.  ph  ->  ph ) )
41, 3syl9r 73 1  |-  (STAB  ph  ->  ( ( -.  ph  ->  ps )  ->  ( -.  ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  STAB wstab 825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-stab 826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator