ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-cc Unicode version

Definition df-cc 7204
Description: The expression CCHOICE will be used as a readable shorthand for any form of countable choice, analogous to df-ac 7162 for full choice. (Contributed by Jim Kingdon, 27-Nov-2023.)
Assertion
Ref Expression
df-cc  |-  (CCHOICE  <->  A. x
( dom  x  ~~  om 
->  E. f ( f 
C_  x  /\  f  Fn  dom  x ) ) )
Distinct variable group:    x, f

Detailed syntax breakdown of Definition df-cc
StepHypRef Expression
1 wacc 7203 . 2  wff CCHOICE
2 vx . . . . . . 7  setvar  x
32cv 1342 . . . . . 6  class  x
43cdm 4604 . . . . 5  class  dom  x
5 com 4567 . . . . 5  class  om
6 cen 6704 . . . . 5  class  ~~
74, 5, 6wbr 3982 . . . 4  wff  dom  x  ~~  om
8 vf . . . . . . . 8  setvar  f
98cv 1342 . . . . . . 7  class  f
109, 3wss 3116 . . . . . 6  wff  f  C_  x
119, 4wfn 5183 . . . . . 6  wff  f  Fn 
dom  x
1210, 11wa 103 . . . . 5  wff  ( f 
C_  x  /\  f  Fn  dom  x )
1312, 8wex 1480 . . . 4  wff  E. f
( f  C_  x  /\  f  Fn  dom  x )
147, 13wi 4 . . 3  wff  ( dom  x  ~~  om  ->  E. f ( f  C_  x  /\  f  Fn  dom  x ) )
1514, 2wal 1341 . 2  wff  A. x
( dom  x  ~~  om 
->  E. f ( f 
C_  x  /\  f  Fn  dom  x ) )
161, 15wb 104 1  wff  (CCHOICE  <->  A. x
( dom  x  ~~  om 
->  E. f ( f 
C_  x  /\  f  Fn  dom  x ) ) )
Colors of variables: wff set class
This definition is referenced by:  ccfunen  7205
  Copyright terms: Public domain W3C validator