| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccfunen | Unicode version | ||
| Description: Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
| Ref | Expression |
|---|---|
| ccfunen.cc |
|
| ccfunen.a |
|
| ccfunen.m |
|
| Ref | Expression |
|---|---|
| ccfunen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccfunen.a |
. . . . . 6
| |
| 2 | encv 6832 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | simpld 112 |
. . . 4
|
| 5 | abid2 2325 |
. . . . . 6
| |
| 6 | vex 2774 |
. . . . . 6
| |
| 7 | 5, 6 | eqeltri 2277 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 4, 8 | opabex3d 6205 |
. . 3
|
| 10 | ccfunen.cc |
. . . 4
| |
| 11 | df-cc 7374 |
. . . 4
| |
| 12 | 10, 11 | sylib 122 |
. . 3
|
| 13 | ccfunen.m |
. . . . . 6
| |
| 14 | elequ2 2180 |
. . . . . . . . 9
| |
| 15 | 14 | exbidv 1847 |
. . . . . . . 8
|
| 16 | 15 | cbvralv 2737 |
. . . . . . 7
|
| 17 | elequ1 2179 |
. . . . . . . . 9
| |
| 18 | 17 | cbvexv 1941 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2511 |
. . . . . . 7
|
| 20 | 16, 19 | bitri 184 |
. . . . . 6
|
| 21 | 13, 20 | sylib 122 |
. . . . 5
|
| 22 | dmopab3 4890 |
. . . . 5
| |
| 23 | 21, 22 | sylib 122 |
. . . 4
|
| 24 | 23, 1 | eqbrtrd 4065 |
. . 3
|
| 25 | dmeq 4877 |
. . . . . 6
| |
| 26 | 25 | breq1d 4053 |
. . . . 5
|
| 27 | sseq2 3216 |
. . . . . . 7
| |
| 28 | 25 | fneq2d 5364 |
. . . . . . 7
|
| 29 | 27, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | 29 | exbidv 1847 |
. . . . 5
|
| 31 | 26, 30 | imbi12d 234 |
. . . 4
|
| 32 | 31 | spcgv 2859 |
. . 3
|
| 33 | 9, 12, 24, 32 | syl3c 63 |
. 2
|
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 23 | fneq2d 5364 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 34, 36 | mpbid 147 |
. . . . 5
|
| 38 | simplrl 535 |
. . . . . . . . 9
| |
| 39 | fnopfv 5709 |
. . . . . . . . . 10
| |
| 40 | 37, 39 | sylan 283 |
. . . . . . . . 9
|
| 41 | 38, 40 | sseldd 3193 |
. . . . . . . 8
|
| 42 | vex 2774 |
. . . . . . . . 9
| |
| 43 | vex 2774 |
. . . . . . . . . 10
| |
| 44 | 43, 42 | fvex 5595 |
. . . . . . . . 9
|
| 45 | eleq1 2267 |
. . . . . . . . . 10
| |
| 46 | elequ2 2180 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | anbi12d 473 |
. . . . . . . . 9
|
| 48 | eleq1 2267 |
. . . . . . . . . 10
| |
| 49 | 48 | anbi2d 464 |
. . . . . . . . 9
|
| 50 | 42, 44, 47, 49 | opelopab 4317 |
. . . . . . . 8
|
| 51 | 41, 50 | sylib 122 |
. . . . . . 7
|
| 52 | 51 | simprd 114 |
. . . . . 6
|
| 53 | 52 | ralrimiva 2578 |
. . . . 5
|
| 54 | 37, 53 | jca 306 |
. . . 4
|
| 55 | 54 | ex 115 |
. . 3
|
| 56 | 55 | eximdv 1902 |
. 2
|
| 57 | 33, 56 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-en 6827 df-cc 7374 |
| This theorem is referenced by: cc1 7376 cc2lem 7377 |
| Copyright terms: Public domain | W3C validator |