| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccfunen | Unicode version | ||
| Description: Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
| Ref | Expression |
|---|---|
| ccfunen.cc |
|
| ccfunen.a |
|
| ccfunen.m |
|
| Ref | Expression |
|---|---|
| ccfunen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccfunen.a |
. . . . . 6
| |
| 2 | encv 6805 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | simpld 112 |
. . . 4
|
| 5 | abid2 2317 |
. . . . . 6
| |
| 6 | vex 2766 |
. . . . . 6
| |
| 7 | 5, 6 | eqeltri 2269 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 4, 8 | opabex3d 6178 |
. . 3
|
| 10 | ccfunen.cc |
. . . 4
| |
| 11 | df-cc 7330 |
. . . 4
| |
| 12 | 10, 11 | sylib 122 |
. . 3
|
| 13 | ccfunen.m |
. . . . . 6
| |
| 14 | elequ2 2172 |
. . . . . . . . 9
| |
| 15 | 14 | exbidv 1839 |
. . . . . . . 8
|
| 16 | 15 | cbvralv 2729 |
. . . . . . 7
|
| 17 | elequ1 2171 |
. . . . . . . . 9
| |
| 18 | 17 | cbvexv 1933 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2503 |
. . . . . . 7
|
| 20 | 16, 19 | bitri 184 |
. . . . . 6
|
| 21 | 13, 20 | sylib 122 |
. . . . 5
|
| 22 | dmopab3 4879 |
. . . . 5
| |
| 23 | 21, 22 | sylib 122 |
. . . 4
|
| 24 | 23, 1 | eqbrtrd 4055 |
. . 3
|
| 25 | dmeq 4866 |
. . . . . 6
| |
| 26 | 25 | breq1d 4043 |
. . . . 5
|
| 27 | sseq2 3207 |
. . . . . . 7
| |
| 28 | 25 | fneq2d 5349 |
. . . . . . 7
|
| 29 | 27, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | 29 | exbidv 1839 |
. . . . 5
|
| 31 | 26, 30 | imbi12d 234 |
. . . 4
|
| 32 | 31 | spcgv 2851 |
. . 3
|
| 33 | 9, 12, 24, 32 | syl3c 63 |
. 2
|
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 23 | fneq2d 5349 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 34, 36 | mpbid 147 |
. . . . 5
|
| 38 | simplrl 535 |
. . . . . . . . 9
| |
| 39 | fnopfv 5692 |
. . . . . . . . . 10
| |
| 40 | 37, 39 | sylan 283 |
. . . . . . . . 9
|
| 41 | 38, 40 | sseldd 3184 |
. . . . . . . 8
|
| 42 | vex 2766 |
. . . . . . . . 9
| |
| 43 | vex 2766 |
. . . . . . . . . 10
| |
| 44 | 43, 42 | fvex 5578 |
. . . . . . . . 9
|
| 45 | eleq1 2259 |
. . . . . . . . . 10
| |
| 46 | elequ2 2172 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | anbi12d 473 |
. . . . . . . . 9
|
| 48 | eleq1 2259 |
. . . . . . . . . 10
| |
| 49 | 48 | anbi2d 464 |
. . . . . . . . 9
|
| 50 | 42, 44, 47, 49 | opelopab 4306 |
. . . . . . . 8
|
| 51 | 41, 50 | sylib 122 |
. . . . . . 7
|
| 52 | 51 | simprd 114 |
. . . . . 6
|
| 53 | 52 | ralrimiva 2570 |
. . . . 5
|
| 54 | 37, 53 | jca 306 |
. . . 4
|
| 55 | 54 | ex 115 |
. . 3
|
| 56 | 55 | eximdv 1894 |
. 2
|
| 57 | 33, 56 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-en 6800 df-cc 7330 |
| This theorem is referenced by: cc1 7332 cc2lem 7333 |
| Copyright terms: Public domain | W3C validator |