| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ccfunen | Unicode version | ||
| Description: Existence of a choice function for a countably infinite set. (Contributed by Jim Kingdon, 28-Nov-2023.) |
| Ref | Expression |
|---|---|
| ccfunen.cc |
|
| ccfunen.a |
|
| ccfunen.m |
|
| Ref | Expression |
|---|---|
| ccfunen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccfunen.a |
. . . . . 6
| |
| 2 | encv 6851 |
. . . . . 6
| |
| 3 | 1, 2 | syl 14 |
. . . . 5
|
| 4 | 3 | simpld 112 |
. . . 4
|
| 5 | abid2 2327 |
. . . . . 6
| |
| 6 | vex 2776 |
. . . . . 6
| |
| 7 | 5, 6 | eqeltri 2279 |
. . . . 5
|
| 8 | 7 | a1i 9 |
. . . 4
|
| 9 | 4, 8 | opabex3d 6224 |
. . 3
|
| 10 | ccfunen.cc |
. . . 4
| |
| 11 | df-cc 7405 |
. . . 4
| |
| 12 | 10, 11 | sylib 122 |
. . 3
|
| 13 | ccfunen.m |
. . . . . 6
| |
| 14 | elequ2 2182 |
. . . . . . . . 9
| |
| 15 | 14 | exbidv 1849 |
. . . . . . . 8
|
| 16 | 15 | cbvralv 2739 |
. . . . . . 7
|
| 17 | elequ1 2181 |
. . . . . . . . 9
| |
| 18 | 17 | cbvexv 1943 |
. . . . . . . 8
|
| 19 | 18 | ralbii 2513 |
. . . . . . 7
|
| 20 | 16, 19 | bitri 184 |
. . . . . 6
|
| 21 | 13, 20 | sylib 122 |
. . . . 5
|
| 22 | dmopab3 4905 |
. . . . 5
| |
| 23 | 21, 22 | sylib 122 |
. . . 4
|
| 24 | 23, 1 | eqbrtrd 4076 |
. . 3
|
| 25 | dmeq 4892 |
. . . . . 6
| |
| 26 | 25 | breq1d 4064 |
. . . . 5
|
| 27 | sseq2 3221 |
. . . . . . 7
| |
| 28 | 25 | fneq2d 5379 |
. . . . . . 7
|
| 29 | 27, 28 | anbi12d 473 |
. . . . . 6
|
| 30 | 29 | exbidv 1849 |
. . . . 5
|
| 31 | 26, 30 | imbi12d 234 |
. . . 4
|
| 32 | 31 | spcgv 2864 |
. . 3
|
| 33 | 9, 12, 24, 32 | syl3c 63 |
. 2
|
| 34 | simprr 531 |
. . . . . 6
| |
| 35 | 23 | fneq2d 5379 |
. . . . . . 7
|
| 36 | 35 | adantr 276 |
. . . . . 6
|
| 37 | 34, 36 | mpbid 147 |
. . . . 5
|
| 38 | simplrl 535 |
. . . . . . . . 9
| |
| 39 | fnopfv 5728 |
. . . . . . . . . 10
| |
| 40 | 37, 39 | sylan 283 |
. . . . . . . . 9
|
| 41 | 38, 40 | sseldd 3198 |
. . . . . . . 8
|
| 42 | vex 2776 |
. . . . . . . . 9
| |
| 43 | vex 2776 |
. . . . . . . . . 10
| |
| 44 | 43, 42 | fvex 5614 |
. . . . . . . . 9
|
| 45 | eleq1 2269 |
. . . . . . . . . 10
| |
| 46 | elequ2 2182 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | anbi12d 473 |
. . . . . . . . 9
|
| 48 | eleq1 2269 |
. . . . . . . . . 10
| |
| 49 | 48 | anbi2d 464 |
. . . . . . . . 9
|
| 50 | 42, 44, 47, 49 | opelopab 4331 |
. . . . . . . 8
|
| 51 | 41, 50 | sylib 122 |
. . . . . . 7
|
| 52 | 51 | simprd 114 |
. . . . . 6
|
| 53 | 52 | ralrimiva 2580 |
. . . . 5
|
| 54 | 37, 53 | jca 306 |
. . . 4
|
| 55 | 54 | ex 115 |
. . 3
|
| 56 | 55 | eximdv 1904 |
. 2
|
| 57 | 33, 56 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-en 6846 df-cc 7405 |
| This theorem is referenced by: cc1 7407 cc2lem 7408 |
| Copyright terms: Public domain | W3C validator |