Detailed syntax breakdown of Definition df-cc
| Step | Hyp | Ref
| Expression |
| 1 | | wacc 7329 |
. 2
wff
CCHOICE |
| 2 | | vx |
. . . . . . 7
setvar 𝑥 |
| 3 | 2 | cv 1363 |
. . . . . 6
class 𝑥 |
| 4 | 3 | cdm 4663 |
. . . . 5
class dom 𝑥 |
| 5 | | com 4626 |
. . . . 5
class
ω |
| 6 | | cen 6797 |
. . . . 5
class
≈ |
| 7 | 4, 5, 6 | wbr 4033 |
. . . 4
wff dom 𝑥 ≈
ω |
| 8 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 9 | 8 | cv 1363 |
. . . . . . 7
class 𝑓 |
| 10 | 9, 3 | wss 3157 |
. . . . . 6
wff 𝑓 ⊆ 𝑥 |
| 11 | 9, 4 | wfn 5253 |
. . . . . 6
wff 𝑓 Fn dom 𝑥 |
| 12 | 10, 11 | wa 104 |
. . . . 5
wff (𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) |
| 13 | 12, 8 | wex 1506 |
. . . 4
wff
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) |
| 14 | 7, 13 | wi 4 |
. . 3
wff (dom 𝑥 ≈ ω →
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
| 15 | 14, 2 | wal 1362 |
. 2
wff
∀𝑥(dom 𝑥 ≈ ω →
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
| 16 | 1, 15 | wb 105 |
1
wff
(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) |