Detailed syntax breakdown of Definition df-cc
Step | Hyp | Ref
| Expression |
1 | | wacc 7203 |
. 2
wff
CCHOICE |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1342 |
. . . . . 6
class 𝑥 |
4 | 3 | cdm 4604 |
. . . . 5
class dom 𝑥 |
5 | | com 4567 |
. . . . 5
class
ω |
6 | | cen 6704 |
. . . . 5
class
≈ |
7 | 4, 5, 6 | wbr 3982 |
. . . 4
wff dom 𝑥 ≈
ω |
8 | | vf |
. . . . . . . 8
setvar 𝑓 |
9 | 8 | cv 1342 |
. . . . . . 7
class 𝑓 |
10 | 9, 3 | wss 3116 |
. . . . . 6
wff 𝑓 ⊆ 𝑥 |
11 | 9, 4 | wfn 5183 |
. . . . . 6
wff 𝑓 Fn dom 𝑥 |
12 | 10, 11 | wa 103 |
. . . . 5
wff (𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) |
13 | 12, 8 | wex 1480 |
. . . 4
wff
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) |
14 | 7, 13 | wi 4 |
. . 3
wff (dom 𝑥 ≈ ω →
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
15 | 14, 2 | wal 1341 |
. 2
wff
∀𝑥(dom 𝑥 ≈ ω →
∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
16 | 1, 15 | wb 104 |
1
wff
(CCHOICE ↔ ∀𝑥(dom 𝑥 ≈ ω → ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥))) |