HomeHome Intuitionistic Logic Explorer
Theorem List (p. 145 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14401-14500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembasgen2 14401* Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( J  e.  Top  /\  B  C_  J  /\  A. x  e.  J  A. y  e.  x  E. z  e.  B  (
 y  e.  z  /\  z  C_  x ) ) 
 ->  ( topGen `  B )  =  J )
 
Theorem2basgeng 14402 Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Jim Kingdon, 5-Mar-2023.)
 |-  ( ( B  e.  V  /\  B  C_  C  /\  C  C_  ( topGen `  B ) )  ->  ( topGen `  B )  =  ( topGen `  C )
 )
 
Theorembastop1 14403* A subset of a topology is a basis for the topology iff every member of the topology is a union of members of the basis. We use the idiom " ( topGen `  B
)  =  J " to express " B is a basis for topology  J " since we do not have a separate notation for this. Definition 15.35 of [Schechter] p. 428. (Contributed by NM, 2-Feb-2008.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( J  e.  Top  /\  B  C_  J )  ->  ( ( topGen `  B )  =  J  <->  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y ) ) )
 
Theorembastop2 14404* A version of bastop1 14403 that doesn't have  B  C_  J in the antecedent. (Contributed by NM, 3-Feb-2008.)
 |-  ( J  e.  Top  ->  ( ( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y ) ) ) )
 
9.1.3  Examples of topologies
 
Theoremdistop 14405 The discrete topology on a set  A. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 17-Jul-2006.) (Revised by Mario Carneiro, 19-Mar-2015.)
 |-  ( A  e.  V  ->  ~P A  e.  Top )
 
Theoremtopnex 14406 The class of all topologies is a proper class. The proof uses discrete topologies and pwnex 4485. (Contributed by BJ, 2-May-2021.)
 |- 
 Top  e/  _V
 
Theoremdistopon 14407 The discrete topology on a set  A, with base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( A  e.  V  ->  ~P A  e.  (TopOn `  A ) )
 
Theoremsn0topon 14408 The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |- 
 { (/) }  e.  (TopOn `  (/) )
 
Theoremsn0top 14409 The singleton of the empty set is a topology. (Contributed by Stefan Allan, 3-Mar-2006.) (Proof shortened by Mario Carneiro, 13-Aug-2015.)
 |- 
 { (/) }  e.  Top
 
Theoremepttop 14410* The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( ( A  e.  V  /\  P  e.  A )  ->  { x  e. 
 ~P A  |  ( P  e.  x  ->  x  =  A ) }  e.  (TopOn `  A ) )
 
Theoremdistps 14411 The discrete topology on a set  A expressed as a topological space. (Contributed by FL, 20-Aug-2006.)
 |-  A  e.  _V   &    |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
 <. (TopSet `  ndx ) ,  ~P A >. }   =>    |-  K  e.  TopSp
 
9.1.4  Closure and interior
 
Syntaxccld 14412 Extend class notation with the set of closed sets of a topology.
 class  Clsd
 
Syntaxcnt 14413 Extend class notation with interior of a subset of a topology base set.
 class  int
 
Syntaxccl 14414 Extend class notation with closure of a subset of a topology base set.
 class  cls
 
Definitiondf-cld 14415* Define a function on topologies whose value is the set of closed sets of the topology. (Contributed by NM, 2-Oct-2006.)
 |- 
 Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
 
Definitiondf-ntr 14416* Define a function on topologies whose value is the interior function on the subsets of the base set. See ntrval 14430. (Contributed by NM, 10-Sep-2006.)
 |- 
 int  =  ( j  e.  Top  |->  ( x  e. 
 ~P U. j  |->  U. (
 j  i^i  ~P x ) ) )
 
Definitiondf-cls 14417* Define a function on topologies whose value is the closure function on the subsets of the base set. See clsval 14431. (Contributed by NM, 3-Oct-2006.)
 |- 
 cls  =  ( j  e.  Top  |->  ( x  e. 
 ~P U. j  |->  |^| { y  e.  ( Clsd `  j )  |  x  C_  y }
 ) )
 
Theoremfncld 14418 The closed-set generator is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |- 
 Clsd  Fn  Top
 
Theoremcldval 14419* The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
 
Theoremntrfval 14420* The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( int `  J )  =  ( x  e.  ~P X  |->  U. ( J  i^i  ~P x ) ) )
 
Theoremclsfval 14421* The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( cls `  J )  =  ( x  e.  ~P X  |->  |^| { y  e.  ( Clsd `  J )  |  x  C_  y }
 ) )
 
Theoremcldrcl 14422 Reverse closure of the closed set operation. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( C  e.  ( Clsd `  J )  ->  J  e.  Top )
 
Theoremiscld 14423 The predicate "the class  S is a closed set". (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X  \  S )  e.  J ) ) )
 
Theoremiscld2 14424 A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( S  e.  ( Clsd `  J )  <->  ( X  \  S )  e.  J ) )
 
Theoremcldss 14425 A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
 |-  X  =  U. J   =>    |-  ( S  e.  ( Clsd `  J )  ->  S  C_  X )
 
Theoremcldss2 14426 The set of closed sets is contained in the powerset of the base. (Contributed by Mario Carneiro, 6-Jan-2014.)
 |-  X  =  U. J   =>    |-  ( Clsd `  J )  C_  ~P X
 
Theoremcldopn 14427 The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
 |-  X  =  U. J   =>    |-  ( S  e.  ( Clsd `  J )  ->  ( X  \  S )  e.  J )
 
Theoremdifopn 14428 The difference of a closed set with an open set is open. (Contributed by Mario Carneiro, 6-Jan-2014.)
 |-  X  =  U. J   =>    |-  (
 ( A  e.  J  /\  B  e.  ( Clsd `  J ) )  ->  ( A  \  B )  e.  J )
 
Theoremtopcld 14429 The underlying set of a topology is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 3-Oct-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J )
 )
 
Theoremntrval 14430 The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  = 
 U. ( J  i^i  ~P S ) )
 
Theoremclsval 14431* The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of [Munkres] p. 94. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( cls `  J ) `  S )  = 
 |^| { x  e.  ( Clsd `  J )  |  S  C_  x }
 )
 
Theorem0cld 14432 The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  ( Clsd `  J ) )
 
Theoremuncld 14433 The union of two closed sets is closed. Equivalent to Theorem 6.1(3) of [Munkres] p. 93. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( A  e.  ( Clsd `  J )  /\  B  e.  ( Clsd `  J ) )  ->  ( A  u.  B )  e.  ( Clsd `  J ) )
 
Theoremcldcls 14434 A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
 |-  ( S  e.  ( Clsd `  J )  ->  ( ( cls `  J ) `  S )  =  S )
 
Theoremiuncld 14435* A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by Jim Kingdon, 10-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  Fin  /\  A. x  e.  A  B  e.  ( Clsd `  J )
 )  ->  U_ x  e.  A  B  e.  ( Clsd `  J ) )
 
Theoremunicld 14436 A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  Fin  /\  A  C_  ( Clsd `  J ) )  ->  U. A  e.  ( Clsd `  J )
 )
 
Theoremntropn 14437 The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  e.  J )
 
Theoremclsss 14438 Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  ( ( cls `  J ) `  T )  C_  ( ( cls `  J ) `  S ) )
 
Theoremntrss 14439 Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  ( ( int `  J ) `  T )  C_  ( ( int `  J ) `  S ) )
 
Theoremsscls 14440 A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S ) )
 
Theoremntrss2 14441 A subset includes its interior. (Contributed by NM, 3-Oct-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  C_  S )
 
Theoremssntr 14442 An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S )
 )  ->  O  C_  (
 ( int `  J ) `  S ) )
 
Theoremntrss3 14443 The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  S )  C_  X )
 
Theoremntrin 14444 A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  C_  X  /\  B  C_  X )  ->  ( ( int `  J ) `  ( A  i^i  B ) )  =  ( ( ( int `  J ) `  A )  i^i  ( ( int `  J ) `  B ) ) )
 
Theoremisopn3 14445 A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( S  e.  J  <->  ( ( int `  J ) `  S )  =  S ) )
 
Theoremntridm 14446 The interior operation is idempotent. (Contributed by NM, 2-Oct-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( int `  J ) `  ( ( int `  J ) `  S ) )  =  (
 ( int `  J ) `  S ) )
 
Theoremclstop 14447 The closure of a topology's underlying set is the entire set. (Contributed by NM, 5-Oct-2007.) (Proof shortened by Jim Kingdon, 11-Mar-2023.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  (
 ( cls `  J ) `  X )  =  X )
 
Theoremntrtop 14448 The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  (
 ( int `  J ) `  X )  =  X )
 
Theoremclsss2 14449 If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  ( ( cls `  J ) `  S )  C_  C )
 
Theoremclsss3 14450 The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( cls `  J ) `  S )  C_  X )
 
Theoremntrcls0 14451 A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  ( ( int `  J ) `  ( ( cls `  J ) `  S ) )  =  (/) )  ->  ( ( int `  J ) `  S )  =  (/) )
 
Theoremntreq0 14452* Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( ( int `  J ) `  S )  =  (/)  <->  A. x  e.  J  ( x  C_  S  ->  x  =  (/) ) ) )
 
Theoremcls0 14453 The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.)
 |-  ( J  e.  Top  ->  ( ( cls `  J ) `  (/) )  =  (/) )
 
Theoremntr0 14454 The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
 |-  ( J  e.  Top  ->  ( ( int `  J ) `  (/) )  =  (/) )
 
Theoremisopn3i 14455 An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  ( ( J  e.  Top  /\  S  e.  J ) 
 ->  ( ( int `  J ) `  S )  =  S )
 
Theoremdiscld 14456 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
 |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )
 
Theoremsn0cld 14457 The closed sets of the topology 
{ (/) }. (Contributed by FL, 5-Jan-2009.)
 |-  ( Clsd `  { (/) } )  =  { (/) }
 
9.1.5  Neighborhoods
 
Syntaxcnei 14458 Extend class notation with neighborhood relation for topologies.
 class  nei
 
Definitiondf-nei 14459* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)
 |- 
 nei  =  ( j  e.  Top  |->  ( x  e. 
 ~P U. j  |->  { y  e.  ~P U. j  | 
 E. g  e.  j  ( x  C_  g  /\  g  C_  y ) }
 ) )
 
Theoremneifval 14460* Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( nei `  J )  =  ( x  e.  ~P X  |->  { v  e.  ~P X  |  E. g  e.  J  ( x  C_  g  /\  g  C_  v
 ) } ) )
 
Theoremneif 14461 The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( nei `  J )  Fn 
 ~P X )
 
Theoremneiss2 14462 A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  X )
 
Theoremneival 14463* Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( ( nei `  J ) `  S )  =  { v  e.  ~P X  |  E. g  e.  J  ( S  C_  g  /\  g  C_  v
 ) } )
 
Theoremisnei 14464* The predicate "the class  N is a neighborhood of  S". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  ( N  e.  (
 ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
 
Theoremneiint 14465 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  (
 ( nei `  J ) `  S )  <->  S  C_  ( ( int `  J ) `  N ) ) )
 
Theoremisneip 14466* The predicate "the class  N is a neighborhood of point  P". (Contributed by NM, 26-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  P  e.  X ) 
 ->  ( N  e.  (
 ( nei `  J ) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
 
Theoremneii1 14467 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  N  C_  X )
 
Theoremneisspw 14468 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  (
 ( nei `  J ) `  S )  C_  ~P X )
 
Theoremneii2 14469* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
 
Theoremneiss 14470 Any neighborhood of a set  S is also a neighborhood of any subset  R  C_  S. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  R  C_  S )  ->  N  e.  ( ( nei `  J ) `  R ) )
 
Theoremssnei 14471 A set is included in any of its neighborhoods. Generalization to subsets of elnei 14472. (Contributed by FL, 16-Nov-2006.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  N )
 
Theoremelnei 14472 A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
 |-  ( ( J  e.  Top  /\  P  e.  A  /\  N  e.  ( ( nei `  J ) `  { P } ) ) 
 ->  P  e.  N )
 
Theorem0nnei 14473 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
 |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/)  e.  ( ( nei `  J ) `  S ) )
 
Theoremneipsm 14474* A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } ) ) )
 
Theoremopnneissb 14475 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  ->  ( S  C_  N  <->  N  e.  (
 ( nei `  J ) `  S ) ) )
 
Theoremopnssneib 14476 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  e.  J  /\  N  C_  X )  ->  ( S  C_  N  <->  N  e.  (
 ( nei `  J ) `  S ) ) )
 
Theoremssnei2 14477 Any subset  M of  X containing a neighborhood  N of a set  S is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
 |-  X  =  U. J   =>    |-  (
 ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  /\  ( N  C_  M  /\  M  C_  X ) ) 
 ->  M  e.  ( ( nei `  J ) `  S ) )
 
Theoremopnneiss 14478 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
 |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  N )  ->  N  e.  ( ( nei `  J ) `  S ) )
 
Theoremopnneip 14479 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
 |-  ( ( J  e.  Top  /\  N  e.  J  /\  P  e.  N )  ->  N  e.  ( ( nei `  J ) `  { P } )
 )
 
Theoremtpnei 14480 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 14478. (Contributed by FL, 2-Oct-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  (
 ( nei `  J ) `  S ) ) )
 
Theoremneiuni 14481 The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  S  C_  X )  ->  X  =  U. (
 ( nei `  J ) `  S ) )
 
Theoremtopssnei 14482 A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
 |-  X  =  U. J   &    |-  Y  =  U. K   =>    |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  X  =  Y ) 
 /\  J  C_  K )  ->  ( ( nei `  J ) `  S )  C_  ( ( nei `  K ) `  S ) )
 
Theoreminnei 14483 The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  M  e.  ( ( nei `  J ) `  S ) ) 
 ->  ( N  i^i  M )  e.  ( ( nei `  J ) `  S ) )
 
Theoremopnneiid 14484 Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
 |-  ( J  e.  Top  ->  ( N  e.  (
 ( nei `  J ) `  N )  <->  N  e.  J ) )
 
Theoremneissex 14485* For any neighborhood  N of  S, there is a neighborhood  x of  S such that  N is a neighborhood of all subsets of  x. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
 |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. x  e.  (
 ( nei `  J ) `  S ) A. y
 ( y  C_  x  ->  N  e.  ( ( nei `  J ) `  y ) ) )
 
Theorem0nei 14486 The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  ( ( nei `  J ) `  (/) ) )
 
9.1.6  Subspace topologies
 
Theoremrestrcl 14487 Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
 |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V ) )
 
Theoremrestbasg 14488 A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.)
 |-  ( ( B  e.  TopBases  /\  A  e.  V ) 
 ->  ( Bt  A )  e.  TopBases )
 
Theoremtgrest 14489 A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
 |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A ) )  =  ( ( topGen `  B )t  A ) )
 
Theoremresttop 14490 A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89.  A is normally a subset of the base set of  J. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  Top  /\  A  e.  V ) 
 ->  ( Jt  A )  e.  Top )
 
Theoremresttopon 14491 A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
 
Theoremrestuni 14492 The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  C_  X )  ->  A  =  U. ( Jt  A ) )
 
Theoremstoig 14493 The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  C_  X )  ->  { <. ( Base `  ndx ) ,  A >. , 
 <. (TopSet `  ndx ) ,  ( Jt  A ) >. }  e.  TopSp
 )
 
Theoremrestco 14494 Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X ) 
 ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )
 
Theoremrestabs 14495 Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  V  /\  S  C_  T  /\  T  e.  W ) 
 ->  ( ( Jt  T )t  S )  =  ( Jt  S ) )
 
Theoremrestin 14496 When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  V  /\  A  e.  W ) 
 ->  ( Jt  A )  =  ( Jt  ( A  i^i  X ) ) )
 
Theoremrestuni2 14497 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  V ) 
 ->  ( A  i^i  X )  =  U. ( Jt  A ) )
 
Theoremresttopon2 14498 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  (TopOn `  ( A  i^i  X ) ) )
 
Theoremrest0 14499 The subspace topology induced by the topology  J on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( J  e.  Top  ->  ( Jt  (/) )  =  { (/)
 } )
 
Theoremrestsn 14500 The only subspace topology induced by the topology  { (/)
}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( A  e.  V  ->  ( { (/) }t  A )  =  { (/) } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >