ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplogbval Unicode version

Theorem rplogbval 15359
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
Assertion
Ref Expression
rplogbval  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B ) ) )

Proof of Theorem rplogbval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 9783 . . . 4  |-  ( B  e.  RR+  ->  B  e.  CC )
213ad2ant1 1020 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  e.  CC )
3 rpne0 9790 . . . 4  |-  ( B  e.  RR+  ->  B  =/=  0 )
433ad2ant1 1020 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  =/=  0
)
5 simp2 1000 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B #  1 )
6 1cnd 8087 . . . . 5  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  1  e.  CC )
7 apne 8695 . . . . 5  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( B #  1  ->  B  =/=  1 ) )
82, 6, 7syl2anc 411 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B #  1  ->  B  =/=  1
) )
95, 8mpd 13 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  =/=  1
)
10 eldifpr 3659 . . 3  |-  ( B  e.  ( CC  \  { 0 ,  1 } )  <->  ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 ) )
112, 4, 9, 10syl3anbrc 1183 . 2  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  e.  ( CC  \  { 0 ,  1 } ) )
12 rpcn 9783 . . . 4  |-  ( X  e.  RR+  ->  X  e.  CC )
13123ad2ant3 1022 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  e.  CC )
14 rpne0 9790 . . . 4  |-  ( X  e.  RR+  ->  X  =/=  0 )
15143ad2ant3 1022 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  =/=  0
)
16 eldifsn 3759 . . 3  |-  ( X  e.  ( CC  \  { 0 } )  <-> 
( X  e.  CC  /\  X  =/=  0 ) )
1713, 15, 16sylanbrc 417 . 2  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  e.  ( CC  \  { 0 } ) )
18 simp3 1001 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  e.  RR+ )
1918relogcld 15296 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( log `  X
)  e.  RR )
20 simp1 999 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  e.  RR+ )
2120relogcld 15296 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( log `  B
)  e.  RR )
2220, 5logrpap0d 15292 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( log `  B
) #  0 )
2319, 21, 22redivclapd 8907 . 2  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( ( log `  X )  /  ( log `  B ) )  e.  RR )
24 fveq2 5575 . . . 4  |-  ( x  =  B  ->  ( log `  x )  =  ( log `  B
) )
2524oveq2d 5959 . . 3  |-  ( x  =  B  ->  (
( log `  y
)  /  ( log `  x ) )  =  ( ( log `  y
)  /  ( log `  B ) ) )
26 fveq2 5575 . . . 4  |-  ( y  =  X  ->  ( log `  y )  =  ( log `  X
) )
2726oveq1d 5958 . . 3  |-  ( y  =  X  ->  (
( log `  y
)  /  ( log `  B ) )  =  ( ( log `  X
)  /  ( log `  B ) ) )
28 df-logb 15358 . . 3  |- logb  =  (
x  e.  ( CC 
\  { 0 ,  1 } ) ,  y  e.  ( CC 
\  { 0 } )  |->  ( ( log `  y )  /  ( log `  x ) ) )
2925, 27, 28ovmpog 6079 . 2  |-  ( ( B  e.  ( CC 
\  { 0 ,  1 } )  /\  X  e.  ( CC  \  { 0 } )  /\  ( ( log `  X )  /  ( log `  B ) )  e.  RR )  -> 
( B logb  X )  =  ( ( log `  X
)  /  ( log `  B ) ) )
3011, 17, 23, 29syl3anc 1249 1  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375    \ cdif 3162   {csn 3632   {cpr 3633   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923   0cc0 7924   1c1 7925   # cap 8653    / cdiv 8744   RR+crp 9774   logclog 15270   logb clogb 15357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044  ax-pre-suploc 8045  ax-addf 8046  ax-mulf 8047
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-of 6157  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-map 6736  df-pm 6737  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-xneg 9893  df-xadd 9894  df-ioo 10013  df-ico 10015  df-icc 10016  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-bc 10891  df-ihash 10919  df-shft 11068  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607  df-ef 11901  df-e 11902  df-rest 13015  df-topgen 13034  df-psmet 14247  df-xmet 14248  df-met 14249  df-bl 14250  df-mopn 14251  df-top 14412  df-topon 14425  df-bases 14457  df-ntr 14510  df-cn 14602  df-cnp 14603  df-tx 14667  df-cncf 14985  df-limced 15070  df-dvap 15071  df-relog 15272  df-logb 15358
This theorem is referenced by:  rplogbcl  15360  rplogbid1  15361  rplogb1  15362  rpelogb  15363  rplogbchbase  15364  relogbval  15365  rplogbreexp  15367  rprelogbmul  15369  rpcxplogb  15378  logbgt0b  15380
  Copyright terms: Public domain W3C validator