ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplogbval Unicode version

Theorem rplogbval 13503
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by Jim Kingdon, 3-Jul-2024.)
Assertion
Ref Expression
rplogbval  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B ) ) )

Proof of Theorem rplogbval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 9598 . . . 4  |-  ( B  e.  RR+  ->  B  e.  CC )
213ad2ant1 1008 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  e.  CC )
3 rpne0 9605 . . . 4  |-  ( B  e.  RR+  ->  B  =/=  0 )
433ad2ant1 1008 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  =/=  0
)
5 simp2 988 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B #  1 )
6 1cnd 7915 . . . . 5  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  1  e.  CC )
7 apne 8521 . . . . 5  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( B #  1  ->  B  =/=  1 ) )
82, 6, 7syl2anc 409 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B #  1  ->  B  =/=  1
) )
95, 8mpd 13 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  =/=  1
)
10 eldifpr 3603 . . 3  |-  ( B  e.  ( CC  \  { 0 ,  1 } )  <->  ( B  e.  CC  /\  B  =/=  0  /\  B  =/=  1 ) )
112, 4, 9, 10syl3anbrc 1171 . 2  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  e.  ( CC  \  { 0 ,  1 } ) )
12 rpcn 9598 . . . 4  |-  ( X  e.  RR+  ->  X  e.  CC )
13123ad2ant3 1010 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  e.  CC )
14 rpne0 9605 . . . 4  |-  ( X  e.  RR+  ->  X  =/=  0 )
15143ad2ant3 1010 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  =/=  0
)
16 eldifsn 3703 . . 3  |-  ( X  e.  ( CC  \  { 0 } )  <-> 
( X  e.  CC  /\  X  =/=  0 ) )
1713, 15, 16sylanbrc 414 . 2  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  e.  ( CC  \  { 0 } ) )
18 simp3 989 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  X  e.  RR+ )
1918relogcld 13443 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( log `  X
)  e.  RR )
20 simp1 987 . . . 4  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  B  e.  RR+ )
2120relogcld 13443 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( log `  B
)  e.  RR )
2220, 5logrpap0d 13439 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( log `  B
) #  0 )
2319, 21, 22redivclapd 8731 . 2  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( ( log `  X )  /  ( log `  B ) )  e.  RR )
24 fveq2 5486 . . . 4  |-  ( x  =  B  ->  ( log `  x )  =  ( log `  B
) )
2524oveq2d 5858 . . 3  |-  ( x  =  B  ->  (
( log `  y
)  /  ( log `  x ) )  =  ( ( log `  y
)  /  ( log `  B ) ) )
26 fveq2 5486 . . . 4  |-  ( y  =  X  ->  ( log `  y )  =  ( log `  X
) )
2726oveq1d 5857 . . 3  |-  ( y  =  X  ->  (
( log `  y
)  /  ( log `  B ) )  =  ( ( log `  X
)  /  ( log `  B ) ) )
28 df-logb 13502 . . 3  |- logb  =  (
x  e.  ( CC 
\  { 0 ,  1 } ) ,  y  e.  ( CC 
\  { 0 } )  |->  ( ( log `  y )  /  ( log `  x ) ) )
2925, 27, 28ovmpog 5976 . 2  |-  ( ( B  e.  ( CC 
\  { 0 ,  1 } )  /\  X  e.  ( CC  \  { 0 } )  /\  ( ( log `  X )  /  ( log `  B ) )  e.  RR )  -> 
( B logb  X )  =  ( ( log `  X
)  /  ( log `  B ) ) )
3011, 17, 23, 29syl3anc 1228 1  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336    \ cdif 3113   {csn 3576   {cpr 3577   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754   # cap 8479    / cdiv 8568   RR+crp 9589   logclog 13417   logb clogb 13501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-e 11590  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266  df-relog 13419  df-logb 13502
This theorem is referenced by:  rplogbcl  13504  rplogbid1  13505  rplogb1  13506  rpelogb  13507  rplogbchbase  13508  relogbval  13509  rplogbreexp  13511  rprelogbmul  13513  rpcxplogb  13522  logbgt0b  13524
  Copyright terms: Public domain W3C validator