HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulginvcom 13401 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  ( I `  X ) )  =  ( I `  ( N  .x.  X ) ) )
 
Theoremmulginvinv 13402 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( I `  ( N  .x.  ( I `  X ) ) )  =  ( N  .x.  X ) )
 
Theoremmulgnn0z 13403 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgz 13404 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( N  .x.  .0.  )  =  .0.  )
 
Theoremmulgnndir 13405 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgnn0dir 13406 Sum of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgdirlem 13407 Lemma for mulgdir 13408. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N )  e. 
 NN0 )  ->  (
 ( M  +  N )  .x.  X )  =  ( ( M  .x.  X )  .+  ( N 
 .x.  X ) ) )
 
Theoremmulgdir 13408 Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M 
 .x.  X )  .+  ( N  .x.  X ) ) )
 
Theoremmulgp1 13409 Group multiple (exponentiation) operation at a successor, extended to  ZZ. (Contributed by Mario Carneiro, 11-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( ( N  +  1 )  .x.  X )  =  ( ( N  .x.  X )  .+  X ) )
 
Theoremmulgneg2 13410 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( N  .x.  ( I `  X ) ) )
 
Theoremmulgnnass 13411 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgnn0ass 13412 Product of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) )
 
Theoremmulgass 13413 Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( M  x.  N )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgassr 13414 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
 )  ->  ( ( N  x.  M )  .x.  X )  =  ( M 
 .x.  ( N  .x.  X ) ) )
 
Theoremmulgmodid 13415 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .x. 
 =  (.g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M  .x.  X )  =  .0.  ) ) 
 ->  ( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
 
Theoremmulgsubdir 13416 Distribution of group multiples over subtraction for group elements, subdir 8440 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B ) )  ->  ( ( M  -  N )  .x.  X )  =  ( ( M 
 .x.  X )  .-  ( N  .x.  X ) ) )
 
Theoremmhmmulg 13417 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   &    |-  .X.  =  (.g `  H )   =>    |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
 
Theoremmulgpropdg 13418* Two structures with the same group-nature have the same group multiple function.  K is expected to either be  _V (when strong equality is available) or  B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  ( ph  ->  .x.  =  (.g `  G ) )   &    |-  ( ph  ->  .X.  =  (.g `  H ) )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  H  e.  W )   &    |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  B  =  ( Base `  H )
 )   &    |-  ( ph  ->  B  C_  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  e.  K )   &    |-  ( ( ph  /\  ( x  e.  K  /\  y  e.  K ) )  ->  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )   =>    |-  ( ph  ->  .x.  =  .X.  )
 
Theoremsubmmulgcl 13419 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  .xb  =  (.g `  G )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S ) 
 ->  ( N  .xb  X )  e.  S )
 
Theoremsubmmulg 13420 A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .xb  =  (.g `  G )   &    |-  H  =  ( Gs  S )   &    |-  .x.  =  (.g `  H )   =>    |-  ( ( S  e.  (SubMnd `  G )  /\  N  e.  NN0  /\  X  e.  S )  ->  ( N  .xb  X )  =  ( N  .x.  X ) )
 
7.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 13421 Extend class notation with all subgroups of a group.
 class SubGrp
 
Syntaxcnsg 13422 Extend class notation with all normal subgroups of a group.
 class NrmSGrp
 
Syntaxcqg 13423 Quotient group equivalence class.
 class ~QG
 
Definitiondf-subg 13424* Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13443), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13438), contains the neutral element of the group (see subg0 13434) and contains the inverses for all of its elements (see subginvcl 13437). (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
 
Definitiondf-nsg 13425* Define the equivalence relation in a quotient ring or quotient group (where  i is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- NrmSGrp  =  ( w  e.  Grp  |->  { s  e.  (SubGrp `  w )  |  [. ( Base `  w )  /  b ]. [. ( +g  `  w )  /  p ]. A. x  e.  b  A. y  e.  b  ( ( x p y )  e.  s  <->  ( y p x )  e.  s
 ) } )
 
Definitiondf-eqg 13426* Define the equivalence relation in a group generated by a subgroup. More precisely, if  G is a group and  H is a subgroup, then  G ~QG  H is the equivalence relation on  G associated with the left cosets of  H. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- ~QG  =  ( r  e.  _V ,  i  e.  _V  |->  {
 <. x ,  y >.  |  ( { x ,  y }  C_  ( Base `  r )  /\  (
 ( ( invg `  r ) `  x ) ( +g  `  r
 ) y )  e.  i ) } )
 
Theoremissubg 13427 The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( S  e.  (SubGrp `  G )  <->  ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
 
Theoremsubgss 13428 A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  C_  B )
 
Theoremsubgid 13429 A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G ) )
 
Theoremsubgex 13430 The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
 |-  ( G  e.  Grp  ->  (SubGrp `  G )  e. 
 _V )
 
Theoremsubggrp 13431 A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( Gs  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  H  e.  Grp )
 
Theoremsubgbas 13432 The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( Gs  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  =  ( Base `  H )
 )
 
Theoremsubgrcl 13433 Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  ( S  e.  (SubGrp `  G )  ->  G  e.  Grp )
 
Theoremsubg0 13434 A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  H  =  ( Gs  S )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  .0.  =  ( 0g `  H ) )
 
Theoremsubginv 13435 The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  H  =  ( Gs  S )   &    |-  I  =  ( invg `  G )   &    |-  J  =  ( invg `  H )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( I `  X )  =  ( J `  X ) )
 
Theoremsubg0cl 13436 The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  .0.  e.  S )
 
Theoremsubginvcl 13437 The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  I  =  ( invg `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( I `  X )  e.  S )
 
Theoremsubgcl 13438 A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |- 
 .+  =  ( +g  `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
 
Theoremsubgsubcl 13439 A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  .-  =  ( -g `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .-  Y )  e.  S )
 
Theoremsubgsub 13440 The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  .-  =  ( -g `  G )   &    |-  H  =  ( Gs  S )   &    |-  N  =  (
 -g `  H )   =>    |-  (
 ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X 
 .-  Y )  =  ( X N Y ) )
 
Theoremsubgmulgcl 13441 Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |- 
 .x.  =  (.g `  G )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  e.  S )
 
Theoremsubgmulg 13442 A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
 |- 
 .x.  =  (.g `  G )   &    |-  H  =  ( Gs  S )   &    |-  .xb  =  (.g `  H )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  N  e.  ZZ  /\  X  e.  S )  ->  ( N  .x.  X )  =  ( N  .xb  X ) )
 
Theoremissubg2m 13443* Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G )  <->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  ( I `  x )  e.  S ) ) ) )
 
Theoremissubgrpd2 13444* Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |-  ( ph  ->  S  =  ( Is  D ) )   &    |-  ( ph  ->  .0.  =  ( 0g `  I ) )   &    |-  ( ph  ->  .+  =  (
 +g  `  I )
 )   &    |-  ( ph  ->  D  C_  ( Base `  I )
 )   &    |-  ( ph  ->  .0.  e.  D )   &    |-  ( ( ph  /\  x  e.  D  /\  y  e.  D )  ->  ( x  .+  y
 )  e.  D )   &    |-  ( ( ph  /\  x  e.  D )  ->  (
 ( invg `  I
 ) `  x )  e.  D )   &    |-  ( ph  ->  I  e.  Grp )   =>    |-  ( ph  ->  D  e.  (SubGrp `  I
 ) )
 
Theoremissubgrpd 13445* Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
 |-  ( ph  ->  S  =  ( Is  D ) )   &    |-  ( ph  ->  .0.  =  ( 0g `  I ) )   &    |-  ( ph  ->  .+  =  (
 +g  `  I )
 )   &    |-  ( ph  ->  D  C_  ( Base `  I )
 )   &    |-  ( ph  ->  .0.  e.  D )   &    |-  ( ( ph  /\  x  e.  D  /\  y  e.  D )  ->  ( x  .+  y
 )  e.  D )   &    |-  ( ( ph  /\  x  e.  D )  ->  (
 ( invg `  I
 ) `  x )  e.  D )   &    |-  ( ph  ->  I  e.  Grp )   =>    |-  ( ph  ->  S  e.  Grp )
 
Theoremissubg3 13446* A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G )  <->  ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x )  e.  S ) ) )
 
Theoremissubg4m 13447* A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( G  e.  Grp 
 ->  ( S  e.  (SubGrp `  G )  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S ) ) )
 
Theoremgrpissubg 13448 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 ->  S  e.  (SubGrp `  G ) ) )
 
Theoremresgrpisgrp 13449 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.)
 |-  B  =  ( Base `  G )   &    |-  S  =  (
 Base `  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) 
 ->  ( Gs  S )  e.  Grp ) )
 
Theoremsubgsubm 13450 A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( S  e.  (SubGrp `  G )  ->  S  e.  (SubMnd `  G )
 )
 
Theoremsubsubg 13451 A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
 |-  H  =  ( Gs  S )   =>    |-  ( S  e.  (SubGrp `  G )  ->  ( A  e.  (SubGrp `  H ) 
 <->  ( A  e.  (SubGrp `  G )  /\  A  C_  S ) ) )
 
Theoremsubgintm 13452* The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  ( ( S  C_  (SubGrp `  G )  /\  E. w  w  e.  S )  ->  |^| S  e.  (SubGrp `  G ) )
 
Theorem0subg 13453 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G ) )
 
Theoremtrivsubgd 13454 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   &    |-  ( ph  ->  A  e.  (SubGrp `  G )
 )   =>    |-  ( ph  ->  A  =  B )
 
Theoremtrivsubgsnd 13455 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (SubGrp `  G )  =  { B } )
 
Theoremisnsg 13456* Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
 ( x  .+  y
 )  e.  S  <->  ( y  .+  x )  e.  S ) ) )
 
Theoremisnsg2 13457* Weaken the condition of isnsg 13456 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  X  (
 ( x  .+  y
 )  e.  S  ->  ( y  .+  x )  e.  S ) ) )
 
Theoremnsgbi 13458 Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( ( A  .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
 
Theoremnsgsubg 13459 A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  ( S  e.  (NrmSGrp `  G )  ->  S  e.  (SubGrp `  G )
 )
 
Theoremnsgconj 13460 The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X  /\  B  e.  S )  ->  ( ( A  .+  B )  .-  A )  e.  S )
 
Theoremisnsg3 13461* A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  <->  ( S  e.  (SubGrp `  G )  /\  A. x  e.  X  A. y  e.  S  (
 ( x  .+  y
 )  .-  x )  e.  S ) )
 
Theoremelnmz 13462* Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   =>    |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z
 )  e.  S  <->  ( z  .+  A )  e.  S ) ) )
 
Theoremnmzbi 13463* Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   =>    |-  ( ( A  e.  N  /\  B  e.  X )  ->  ( ( A 
 .+  B )  e.  S  <->  ( B  .+  A )  e.  S ) )
 
Theoremnmzsubg 13464* The normalizer NG(S) of a subset  S of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
 )
 
Theoremssnmz 13465* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  C_  N )
 
Theoremisnsg4 13466* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( S  e.  (NrmSGrp `  G ) 
 <->  ( S  e.  (SubGrp `  G )  /\  N  =  X ) )
 
Theoremnmznsg 13467* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
 |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x 
 .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }   &    |-  X  =  (
 Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  H  =  ( Gs  N )   =>    |-  ( S  e.  (SubGrp `  G )  ->  S  e.  (NrmSGrp `  H )
 )
 
Theorem0nsg 13468 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Grp  ->  {  .0.  }  e.  (NrmSGrp `  G ) )
 
Theoremnsgid 13469 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Grp  ->  B  e.  (NrmSGrp `  G ) )
 
Theorem0idnsgd 13470 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  { {  .0.  } ,  B }  C_  (NrmSGrp `  G )
 )
 
Theoremtrivnsgd 13471 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  =  { B } )
 
Theoremtriv1nsgd 13472 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  B  =  {  .0.  }
 )   =>    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )
 
Theorem1nsgtrivd 13473 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ph  ->  (NrmSGrp `  G )  ~~  1o )   =>    |-  ( ph  ->  B  =  {  .0.  } )
 
Theoremreleqgg 13474 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  R  =  ( G ~QG  S )   =>    |-  ( ( G  e.  V  /\  S  e.  W )  ->  Rel  R )
 
Theoremeqgex 13475 The left coset equivalence relation exists. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( ( G  e.  V  /\  S  e.  W )  ->  ( G ~QG  S )  e.  _V )
 
Theoremeqgfval 13476* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  R  =  ( G ~QG 
 S )   =>    |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y )  e.  S ) }
 )
 
Theoremeqgval 13477 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  N  =  ( invg `  G )   &    |- 
 .+  =  ( +g  `  G )   &    |-  R  =  ( G ~QG 
 S )   =>    |-  ( ( G  e.  V  /\  S  C_  X )  ->  ( A R B 
 <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B )  e.  S ) ) )
 
Theoremeqger 13478 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   =>    |-  ( Y  e.  (SubGrp `  G )  ->  .~  Er  X )
 
Theoremeqglact 13479* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A 
 .+  x ) )
 " Y ) )
 
Theoremeqgid 13480 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( Y  e.  (SubGrp `  G )  ->  [  .0.  ] 
 .~  =  Y )
 
Theoremeqgen 13481 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   =>    |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
 
Theoremeqgcpbl 13482 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  .~  =  ( G ~QG 
 Y )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( Y  e.  (NrmSGrp `  G )  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C 
 .+  D ) ) )
 
Theoremeqg0el 13483 Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
 |- 
 .~  =  ( G ~QG  H )   =>    |-  ( ( G  e.  Grp  /\  H  e.  (SubGrp `  G ) )  ->  ( [ X ]  .~  =  H  <->  X  e.  H ) )
 
Theoremquselbasg 13484* Membership in the base set of a quotient group. (Contributed by AV, 1-Mar-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  U  =  ( G 
 /.s  .~  )   &    |-  B  =  (
 Base `  G )   =>    |-  ( ( G  e.  V  /\  X  e.  W  /\  S  e.  Z )  ->  ( X  e.  ( Base `  U ) 
 <-> 
 E. x  e.  B  X  =  [ x ]  .~  ) )
 
Theoremquseccl0g 13485 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) Generalization of quseccl 13487 for arbitrary sets  G. (Revised by AV, 24-Feb-2025.)
 |- 
 .~  =  ( G ~QG  S )   &    |-  H  =  ( G 
 /.s  .~  )   &    |-  C  =  (
 Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( G  e.  V  /\  X  e.  C  /\  S  e.  Z )  ->  [ X ]  .~  e.  B )
 
Theoremqusgrp 13486 If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   =>    |-  ( S  e.  (NrmSGrp `  G )  ->  H  e.  Grp )
 
Theoremquseccl 13487 Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV, 9-Mar-2025.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  B  =  ( Base `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  B )
 
Theoremqusadd 13488 Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .+b  =  ( +g  `  H )   =>    |-  (
 ( S  e.  (NrmSGrp `  G )  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ] ( G ~QG  S )  .+b  [ Y ] ( G ~QG  S ) )  =  [
 ( X  .+  Y ) ] ( G ~QG  S )
 )
 
Theoremqus0 13489 Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( S  e.  (NrmSGrp `  G )  ->  [  .0.  ] ( G ~QG  S )  =  ( 0g `  H ) )
 
Theoremqusinv 13490 Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  I  =  ( invg `  G )   &    |-  N  =  ( invg `  H )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  X  e.  V )  ->  ( N `  [ X ] ( G ~QG  S )
 )  =  [ ( I `  X ) ]
 ( G ~QG  S ) )
 
Theoremqussub 13491 Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  H  =  ( G 
 /.s 
 ( G ~QG  S ) )   &    |-  V  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( -g `  H )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  X  e.  V  /\  Y  e.  V )  ->  ( [ X ]
 ( G ~QG  S ) N [ Y ] ( G ~QG  S )
 )  =  [ ( X  .-  Y ) ]
 ( G ~QG  S ) )
 
Theoremecqusaddd 13492 Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  ) )
 
Theoremecqusaddcl 13493 Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
 |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )   &    |-  B  =  ( Base `  R )   &    |-  .~  =  ( R ~QG  I )   &    |-  Q  =  ( R  /.s 
 .~  )   =>    |-  ( ( ph  /\  ( A  e.  B  /\  C  e.  B )
 )  ->  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  )  e.  ( Base `  Q ) )
 
7.2.4  Elementary theory of group homomorphisms
 
Syntaxcghm 13494 Extend class notation with the generator of group hom-sets.
 class  GrpHom
 
Definitiondf-ghm 13495* A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  GrpHom  =  ( s  e. 
 Grp ,  t  e.  Grp  |->  { g  |  [. ( Base `  s )  /  w ]. ( g : w --> ( Base `  t )  /\  A. x  e.  w  A. y  e.  w  (
 g `  ( x ( +g  `  s )
 y ) )  =  ( ( g `  x ) ( +g  `  t ) ( g `
  y ) ) ) } )
 
Theoremreldmghm 13496 Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |- 
 Rel  dom  GrpHom
 
Theoremisghm 13497* Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
  v ) ) ) ) )
 
Theoremisghm3 13498* Property of a group homomorphism, similar to ismhm 13211. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X
 --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `  v
 ) ) ) ) )
 
Theoremghmgrp1 13499 A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
 
Theoremghmgrp2 13500 A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15887
  Copyright terms: Public domain < Previous  Next >