HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremgrpidvalg 13401* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  V  ->  .0.  =  ( iota
 e ( e  e.  B  /\  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) ) ) )
 
Theoremgrpidpropdg 13402* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( 0g `  K )  =  ( 0g `  L ) )
 
Theoremfn0g 13403 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |- 
 0g  Fn  _V
 
Theorem0g0 13404 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
 |-  (/)  =  ( 0g `  (/) )
 
Theoremismgmid 13405* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ph  ->  ( ( U  e.  B  /\  A. x  e.  B  ( ( U  .+  x )  =  x  /\  ( x  .+  U )  =  x )
 ) 
 <->  .0.  =  U ) )
 
Theoremmgmidcl 13406* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ph  ->  .0. 
 e.  B )
 
Theoremmgmlrid 13407* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  E. e  e.  B  A. x  e.  B  ( ( e 
 .+  x )  =  x  /\  ( x 
 .+  e )  =  x ) )   =>    |-  ( ( ph  /\  X  e.  B ) 
 ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X )
 )
 
Theoremismgmid2 13408* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  U  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( U  .+  x )  =  x )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( x  .+  U )  =  x )   =>    |-  ( ph  ->  U  =  .0.  )
 
Theoremlidrideqd 13409* If there is a left and right identity element for any binary operation (group operation)  .+, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   =>    |-  ( ph  ->  L  =  R )
 
Theoremlidrididd 13410* If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 13409) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
 |-  ( ph  ->  L  e.  B )   &    |-  ( ph  ->  R  e.  B )   &    |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )   &    |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ph  ->  L  =  .0.  )
 
Theoremgrpidd 13411* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  (  .0.  .+  x )  =  x )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( x  .+  .0.  )  =  x )   =>    |-  ( ph  ->  .0.  =  ( 0g `  G ) )
 
Theoremmgmidsssn0 13412* Property of the set of identities of  G. Either  G has no identities, and  O  =  (/), or it has one and this identity is unique and identified by the  0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x 
 .+  y )  =  y  /\  ( y 
 .+  x )  =  y ) }   =>    |-  ( G  e.  V  ->  O  C_  {  .0.  } )
 
Theoremgrpinvalem 13413* Lemma for grpinva 13414. (Contributed by NM, 9-Aug-2013.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( X  .+  X )  =  X )   =>    |-  ( ( ph  /\  ps )  ->  X  =  O )
 
Theoremgrpinva 13414* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   &    |-  (
 ( ph  /\  ps )  ->  X  e.  B )   &    |-  ( ( ph  /\  ps )  ->  N  e.  B )   &    |-  ( ( ph  /\  ps )  ->  ( N  .+  X )  =  O )   =>    |-  ( ( ph  /\  ps )  ->  ( X  .+  N )  =  O )
 
Theoremgrprida 13415* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
 |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ph  ->  O  e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  B  ( y  .+  x )  =  O )   =>    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  O )  =  x )
 
7.1.3  Iterated sums in a magma

The symbol  gsumg is mostly used in the context of abelian groups. Therefore, it is usually called "group sum". It can be defined, however, in arbitrary magmas (then it should be called "iterated sum"). If the magma is not required to be commutative or associative, then the order of the summands and the order in which summations are done become important. If the magma is not unital, then one cannot define a meaningful empty sum. See the comment for df-igsum 13287.

 
Theoremfngsum 13416 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
 |- 
 gsumg  Fn  ( _V  X.  _V )
 
Theoremigsumvalx 13417* Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 18-Sep-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F  e.  X )   &    |-  ( ph  ->  dom  F  =  A )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
 `  m ) ( A  =  ( m
 ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n ) ) ) ) )
 
Theoremigsumval 13418* Expand out the substitutions in df-igsum 13287. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  (
 iota x ( ( A  =  (/)  /\  x  =  .0.  )  \/  E. m E. n  e.  ( ZZ>=
 `  m ) ( A  =  ( m
 ... n )  /\  x  =  (  seq m (  .+  ,  F ) `  n ) ) ) ) )
 
Theoremgsumfzval 13419 An expression for  gsumg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  if ( N  <  M ,  .0.  ,  (  seq M (  .+  ,  F ) `
  N ) ) )
 
Theoremgsumpropd 13420 The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  ( +g  `  G )  =  ( +g  `  H ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsumpropd2 13421* A stronger version of gsumpropd 13420, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 13422. (Contributed by Thierry Arnoux, 28-Jun-2017.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ( ph  /\  (
 s  e.  ( Base `  G )  /\  t  e.  ( Base `  G )
 ) )  ->  (
 s ( +g  `  G ) t )  e.  ( Base `  G )
 )   &    |-  ( ( ph  /\  (
 s  e.  ( Base `  G )  /\  t  e.  ( Base `  G )
 ) )  ->  (
 s ( +g  `  G ) t )  =  ( s ( +g  `  H ) t ) )   &    |-  ( ph  ->  Fun 
 F )   &    |-  ( ph  ->  ran 
 F  C_  ( Base `  G ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsummgmpropd 13422* A stronger version of gsumpropd 13420 if at least one of the involved structures is a magma, see gsumpropd2 13421. (Contributed by AV, 31-Jan-2020.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  ( Base `  G )  =  ( Base `  H )
 )   &    |-  ( ph  ->  G  e. Mgm )   &    |-  ( ( ph  /\  ( s  e.  ( Base `  G )  /\  t  e.  ( Base `  G ) ) ) 
 ->  ( s ( +g  `  G ) t )  =  ( s (
 +g  `  H )
 t ) )   &    |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  ran  F  C_  ( Base `  G ) )   =>    |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
 
Theoremgsumress 13423* The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither  G nor 
H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  H  =  ( Gs  S )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  A  e.  X )   &    |-  ( ph  ->  S  C_  B )   &    |-  ( ph  ->  F : A --> S )   &    |-  ( ph  ->  .0.  e.  S )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x )
 )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( H  gsumg 
 F ) )
 
Theoremgsum0g 13424 Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |- 
 .0.  =  ( 0g `  G )   =>    |-  ( G  e.  V  ->  ( G  gsumg  (/) )  =  .0.  )
 
Theoremgsumval2 13425 Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( 
 seq M (  .+  ,  F ) `  N ) )
 
Theoremgsumsplit1r 13426 Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  F : ( M ... ( N  +  1
 ) ) --> B )   =>    |-  ( ph  ->  ( G  gsumg  F )  =  ( ( G  gsumg  ( F  |`  ( M
 ... N ) ) )  .+  ( F `
  ( N  +  1 ) ) ) )
 
Theoremgsumprval 13427 Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  =  ( M  +  1 ) )   &    |-  ( ph  ->  F : { M ,  N } --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( F `  M )  .+  ( F `  N ) ) )
 
Theoremgsumpr12val 13428 Value of the group sum operation over the pair  { 1 ,  2 }. (Contributed by AV, 14-Dec-2018.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ph  ->  F : { 1 ,  2 } --> B )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( ( F `  1
 )  .+  ( F `  2 ) ) )
 
7.1.4  Semigroups

A semigroup (Smgrp, see df-sgrp 13430) is a set together with an associative binary operation (see Wikipedia, Semigroup, 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup 13430). In other words, a semigroup is an associative magma. The notion of semigroup is a generalization of that of group where the existence of an identity or inverses is not required.

 
Syntaxcsgrp 13429 Extend class notation with class of all semigroups.
 class Smgrp
 
Definitiondf-sgrp 13430* A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 13384), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |- Smgrp  =  { g  e. Mgm  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g )  /  o ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( ( x o y ) o z )  =  ( x o ( y o z ) ) }
 
Theoremissgrp 13431* The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e. Smgrp  <->  ( M  e. Mgm  /\ 
 A. x  e.  B  A. y  e.  B  A. z  e.  B  (
 ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) )
 
Theoremissgrpv 13432* The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( M  e.  V  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) ) )
 
Theoremissgrpn0 13433* The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  ( A  e.  B  ->  ( M  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .o.  y
 )  e.  B  /\  A. z  e.  B  ( ( x  .o.  y
 )  .o.  z )  =  ( x  .o.  (
 y  .o.  z )
 ) ) ) )
 
Theoremisnsgrp 13434 A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
 |-  B  =  ( Base `  M )   &    |-  .o.  =  (
 +g  `  M )   =>    |-  (
 ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( ( ( X  .o.  Y )  .o. 
 Z )  =/=  ( X  .o.  ( Y  .o.  Z ) )  ->  M  e/ Smgrp ) )
 
Theoremsgrpmgm 13435 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
 |-  ( M  e. Smgrp  ->  M  e. Mgm )
 
Theoremsgrpass 13436 A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .o.  Y )  .o. 
 Z )  =  ( X  .o.  ( Y  .o.  Z ) ) )
 
Theoremsgrpcl 13437 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
 |-  B  =  ( Base `  G )   &    |-  .o.  =  (
 +g  `  G )   =>    |-  (
 ( G  e. Smgrp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .o.  Y )  e.  B )
 
Theoremsgrp0 13438 Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
 |-  ( ( M  e.  V  /\  ( Base `  M )  =  (/) )  ->  M  e. Smgrp )
 
Theoremsgrp1 13439 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e. Smgrp )
 
Theoremissgrpd 13440* Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  G  e.  V )   =>    |-  ( ph  ->  G  e. Smgrp )
 
Theoremsgrppropd 13441* If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
 |-  ( ph  ->  K  e.  V )   &    |-  ( ph  ->  L  e.  W )   &    |-  ( ph  ->  B  =  (
 Base `  K ) )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. Smgrp  <->  L  e. Smgrp ) )
 
Theoremprdsplusgsgrpcl 13442 Structure product pointwise sums are closed when the factors are semigroups. (Contributed by AV, 21-Feb-2025.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I -->Smgrp )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F  .+  G )  e.  B )
 
Theoremprdssgrpd 13443 The product of a family of semigroups is a semigroup. (Contributed by AV, 21-Feb-2025.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I -->Smgrp )   =>    |-  ( ph  ->  Y  e. Smgrp )
 
7.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 13445, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 13447. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 13444 Extend class notation with class of all monoids.
 class  Mnd
 
Definitiondf-mnd 13445* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 13451), whose operation is associative (see mndass 13452) and has a two-sided neutral element (see mndid 13453), see also ismnd 13447. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
 |- 
 Mnd  =  { g  e. Smgrp  |  [. ( Base `  g )  /  b ]. [. ( +g  `  g
 )  /  p ]. E. e  e.  b  A. x  e.  b  ( ( e p x )  =  x  /\  ( x p e )  =  x ) }
 
Theoremismnddef 13446* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
 .+  a )  =  a  /\  ( a 
 .+  e )  =  a ) ) )
 
Theoremismnd 13447* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13451), whose operation is associative (so, a semigroup, see also mndass 13452) and has a two-sided neutral element (see mndid 13453). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd  <->  (
 A. a  e.  B  A. b  e.  B  ( ( a  .+  b
 )  e.  B  /\  A. c  e.  B  ( ( a  .+  b
 )  .+  c )  =  ( a  .+  (
 b  .+  c )
 ) )  /\  E. e  e.  B  A. a  e.  B  ( ( e 
 .+  a )  =  a  /\  ( a 
 .+  e )  =  a ) ) )
 
Theoremsgrpidmndm 13448* A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e. Smgrp  /\ 
 E. e  e.  B  ( E. w  w  e.  e  /\  e  =  .0.  ) )  ->  G  e.  Mnd )
 
Theoremmndsgrp 13449 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
 |-  ( G  e.  Mnd  ->  G  e. Smgrp )
 
Theoremmndmgm 13450 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
 |-  ( M  e.  Mnd  ->  M  e. Mgm )
 
Theoremmndcl 13451 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremmndass 13452 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y )  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
 
Theoremmndid 13453* A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd 
 ->  E. u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
 
Theoremmndideu 13454* The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Mnd 
 ->  E! u  e.  B  A. x  e.  B  ( ( u  .+  x )  =  x  /\  ( x  .+  u )  =  x ) )
 
Theoremmnd32g 13455 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  ( Y  .+  Z )  =  ( Z  .+  Y ) )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremmnd12g 13456 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  ( X  .+  Y )  =  ( Y  .+  X ) )   =>    |-  ( ph  ->  ( X  .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
 
Theoremmnd4g 13457 Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  W  e.  B )   &    |-  ( ph  ->  ( Y  .+  Z )  =  ( Z  .+  Y ) )   =>    |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( ( X  .+  Z )  .+  ( Y 
 .+  W ) ) )
 
Theoremmndidcl 13458 The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( G  e.  Mnd  ->  .0.  e.  B )
 
Theoremmndbn0 13459 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13458). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Mnd  ->  B  =/=  (/) )
 
Theoremhashfinmndnn 13460 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  ( `  B )  e.  NN )
 
Theoremmndplusf 13461 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  Mnd  ->  .+^ 
 : ( B  X.  B ) --> B )
 
Theoremmndlrid 13462 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  ( (  .0.  .+  X )  =  X  /\  ( X  .+  .0.  )  =  X )
 )
 
Theoremmndlid 13463 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremmndrid 13464 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   =>    |-  ( ( G  e.  Mnd  /\  X  e.  B ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremismndd 13465* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  e.  B )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  ->  ( ( x  .+  y ) 
 .+  z )  =  ( x  .+  (
 y  .+  z )
 ) )   &    |-  ( ph  ->  .0. 
 e.  B )   &    |-  (
 ( ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ( x  .+  .0.  )  =  x )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremmndpfo 13466 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+^  =  ( +f `  G )   =>    |-  ( G  e.  Mnd  ->  .+^ 
 : ( B  X.  B ) -onto-> B )
 
Theoremmndfo 13467 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Mnd  /\  .+  Fn  ( B  X.  B ) )  ->  .+  : ( B  X.  B )
 -onto-> B )
 
Theoremmndpropd 13468* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
 
Theoremmndprop 13469 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Mnd  <->  L  e.  Mnd )
 
Theoremissubmnd 13470* Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  H  =  ( Gs  S )   =>    |-  ( ( G  e.  Mnd  /\  S  C_  B  /\  .0.  e.  S )  ->  ( H  e.  Mnd  <->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) )
 
Theoremress0g 13471  0g is unaffected by restriction. This is a bit more generic than submnd0 13472. (Contributed by Thierry Arnoux, 23-Oct-2017.)
 |-  S  =  ( Rs  A )   &    |-  B  =  (
 Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Mnd  /\  .0.  e.  A  /\  A  C_  B )  ->  .0.  =  ( 0g `  S ) )
 
Theoremsubmnd0 13472 The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  H  =  ( Gs  S )   =>    |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S 
 C_  B  /\  .0.  e.  S ) )  ->  .0.  =  ( 0g `  H ) )
 
Theoremmndinvmod 13473* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( ( w  .+  A )  =  .0.  /\  ( A  .+  w )  =  .0.  ) )
 
Theoremprdsplusgcl 13474 Structure product pointwise sums are closed when the factors are monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I --> Mnd )   &    |-  ( ph  ->  F  e.  B )   &    |-  ( ph  ->  G  e.  B )   =>    |-  ( ph  ->  ( F  .+  G )  e.  B )
 
Theoremprdsidlem 13475* Characterization of identity in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  B  =  (
 Base `  Y )   &    |-  .+  =  ( +g  `  Y )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  R : I --> Mnd )   &    |-  .0.  =  ( 0g  o.  R )   =>    |-  ( ph  ->  (  .0.  e.  B  /\  A. x  e.  B  (
 (  .0.  .+  x )  =  x  /\  ( x  .+  .0.  )  =  x ) ) )
 
Theoremprdsmndd 13476 The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Mnd )   =>    |-  ( ph  ->  Y  e.  Mnd )
 
Theoremprds0g 13477 The identity in a product of monoids. (Contributed by Stefan O'Rear, 10-Jan-2015.)
 |-  Y  =  ( S
 X_s
 R )   &    |-  ( ph  ->  I  e.  W )   &    |-  ( ph  ->  S  e.  V )   &    |-  ( ph  ->  R : I --> Mnd )   =>    |-  ( ph  ->  ( 0g  o.  R )  =  ( 0g `  Y ) )
 
Theorempwsmnd 13478 The structure power of a monoid is a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   =>    |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  Y  e.  Mnd )
 
Theorempws0g 13479 The identity in a structure power of a monoid. (Contributed by Mario Carneiro, 11-Jan-2015.)
 |-  Y  =  ( R 
 ^s  I )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Mnd  /\  I  e.  V )  ->  ( I  X.  {  .0.  } )  =  ( 0g `  Y ) )
 
Theoremimasmnd2 13480* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  (
 a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `  a
 )  =  ( F `
  p )  /\  ( F `  b )  =  ( F `  q ) )  ->  ( F `  ( a 
 .+  b ) )  =  ( F `  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  W )   &    |-  ( ( ph  /\  x  e.  V  /\  y  e.  V )  ->  ( x  .+  y )  e.  V )   &    |-  ( ( ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ( F `
  ( ( x 
 .+  y )  .+  z ) )  =  ( F `  ( x  .+  ( y  .+  z ) ) ) )   &    |-  ( ph  ->  .0. 
 e.  V )   &    |-  (
 ( ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x ) )   &    |-  ( ( ph  /\  x  e.  V ) 
 ->  ( F `  ( x  .+  .0.  ) )  =  ( F `  x ) )   =>    |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasmnd 13481* The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |- 
 .+  =  ( +g  `  R )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  (
 a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `  a
 )  =  ( F `
  p )  /\  ( F `  b )  =  ( F `  q ) )  ->  ( F `  ( a 
 .+  b ) )  =  ( F `  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Mnd )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
 
Theoremimasmndf1 13482 The image of a monoid under an injection is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
 |-  U  =  ( F 
 "s 
 R )   &    |-  V  =  (
 Base `  R )   =>    |-  ( ( F : V -1-1-> B  /\  R  e.  Mnd )  ->  U  e.  Mnd )
 
Theoremmnd1 13483 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  M  e.  Mnd )
 
Theoremmnd1id 13484 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
 |-  M  =  { <. (
 Base `  ndx ) ,  { I } >. , 
 <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. }
 >. }   =>    |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
 
7.1.6  Monoid homomorphisms and submonoids
 
Syntaxcmhm 13485 Hom-set generator class for monoids.
 class MndHom
 
Syntaxcsubmnd 13486 Class function taking a monoid to its lattice of submonoids.
 class SubMnd
 
Definitiondf-mhm 13487* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- MndHom  =  ( s  e.  Mnd ,  t  e.  Mnd  |->  { f  e.  ( ( Base `  t
 )  ^m  ( Base `  s ) )  |  ( A. x  e.  ( Base `  s ) A. y  e.  ( Base `  s ) ( f `  ( x ( +g  `  s
 ) y ) )  =  ( ( f `
  x ) (
 +g  `  t )
 ( f `  y
 ) )  /\  (
 f `  ( 0g `  s ) )  =  ( 0g `  t
 ) ) } )
 
Definitiondf-submnd 13488* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- SubMnd  =  ( s  e.  Mnd  |->  { t  e.  ~P ( Base `  s )  |  ( ( 0g `  s )  e.  t  /\  A. x  e.  t  A. y  e.  t  ( x ( +g  `  s
 ) y )  e.  t ) } )
 
Theoremismhm 13489* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  C  =  (
 Base `  T )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   &    |-  .0.  =  ( 0g `  S )   &    |-  Y  =  ( 0g
 `  T )   =>    |-  ( F  e.  ( S MndHom  T )  <->  ( ( S  e.  Mnd  /\  T  e.  Mnd )  /\  ( F : B --> C  /\  A. x  e.  B  A. y  e.  B  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) 
 /\  ( F `  .0.  )  =  Y ) ) )
 
Theoremmhmex 13490 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
 |-  ( ( S  e.  Mnd  /\  T  e.  Mnd )  ->  ( S MndHom  T )  e.  _V )
 
Theoremmhmrcl1 13491 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( F  e.  ( S MndHom  T )  ->  S  e.  Mnd )
 
Theoremmhmrcl2 13492 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( F  e.  ( S MndHom  T )  ->  T  e.  Mnd )
 
Theoremmhmf 13493 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  C  =  (
 Base `  T )   =>    |-  ( F  e.  ( S MndHom  T )  ->  F : B --> C )
 
Theoremmhmpropd 13494* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   =>    |-  ( ph  ->  ( J MndHom  K )  =  ( L MndHom  M ) )
 
Theoremmhmlin 13495 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  .+^  =  (
 +g  `  T )   =>    |-  (
 ( F  e.  ( S MndHom  T )  /\  X  e.  B  /\  Y  e.  B )  ->  ( F `
  ( X  .+  Y ) )  =  ( ( F `  X )  .+^  ( F `
  Y ) ) )
 
Theoremmhm0 13496 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |- 
 .0.  =  ( 0g `  S )   &    |-  Y  =  ( 0g `  T )   =>    |-  ( F  e.  ( S MndHom  T )  ->  ( F `  .0.  )  =  Y )
 
Theoremidmhm 13497 The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
 |-  B  =  ( Base `  M )   =>    |-  ( M  e.  Mnd  ->  (  _I  |`  B )  e.  ( M MndHom  M )
 )
 
Theoremmhmf1o 13498 A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
 |-  B  =  ( Base `  R )   &    |-  C  =  (
 Base `  S )   =>    |-  ( F  e.  ( R MndHom  S )  ->  ( F : B -1-1-onto-> C  <->  `' F  e.  ( S MndHom  R ) ) )
 
Theoremsubmrcl 13499 Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  ( S  e.  (SubMnd `  M )  ->  M  e.  Mnd )
 
Theoremissubm 13500* Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
 |-  B  =  ( Base `  M )   &    |-  .0.  =  ( 0g `  M )   &    |-  .+  =  ( +g  `  M )   =>    |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >