HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 149)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlmodvsdi 13401 Distributive law for scalar product (left-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   =>    |-  ( ( W  e.  LMod  /\  ( R  e.  K  /\  X  e.  V  /\  Y  e.  V )
 )  ->  ( R  .x.  ( X  .+  Y ) )  =  (
 ( R  .x.  X )  .+  ( R  .x.  Y ) ) )
 
Theoremlmodvsdir 13402 Distributive law for scalar product (right-distributivity). (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .+^  R )  .x.  X )  =  ( ( Q  .x.  X )  .+  ( R  .x.  X ) ) )
 
Theoremlmodvsass 13403 Associative law for scalar product. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .X.  =  ( .r `  F )   =>    |-  ( ( W  e.  LMod  /\  ( Q  e.  K  /\  R  e.  K  /\  X  e.  V )
 )  ->  ( ( Q  .X.  R )  .x.  X )  =  ( Q 
 .x.  ( R  .x.  X ) ) )
 
Theoremlmod0cl 13404 The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .0.  =  ( 0g `  F )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  K )
 
Theoremlmod1cl 13405 The ring unity in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( W  e.  LMod  ->  .1. 
 e.  K )
 
Theoremlmodvs1 13406 Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .1.  .x.  X )  =  X )
 
Theoremlmod0vcl 13407 The zero vector is a vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( W  e.  LMod  ->  .0. 
 e.  V )
 
Theoremlmod0vlid 13408 Left identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  (  .0.  .+  X )  =  X )
 
Theoremlmod0vrid 13409 Right identity law for the zero vector. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  .0.  )  =  X )
 
Theoremlmod0vid 13410 Identity equivalent to the value of the zero vector. Provides a convenient way to compute the value. (Contributed by NM, 9-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( ( X  .+  X )  =  X  <->  .0. 
 =  X ) )
 
Theoremlmod0vs 13411 Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  O  =  ( 0g `  F )   &    |- 
 .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( O  .x.  X )  =  .0.  )
 
Theoremlmodvs0 13412 Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  K  =  (
 Base `  F )   &    |-  .0.  =  ( 0g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  K ) 
 ->  ( X  .x.  .0.  )  =  .0.  )
 
Theoremlmodvsmmulgdi 13413 Distributive law for a group multiple of a scalar multiplication. (Contributed by AV, 2-Sep-2019.)
 |-  V  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  K  =  ( Base `  F )   &    |-  .^  =  (.g `  W )   &    |-  E  =  (.g `  F )   =>    |-  ( ( W  e.  LMod  /\  ( C  e.  K  /\  N  e.  NN0  /\  X  e.  V ) )  ->  ( N  .^  ( C 
 .x.  X ) )  =  ( ( N E C )  .x.  X ) )
 
Theoremlmodfopnelem1 13414 Lemma 1 for lmodfopne 13416. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  V  =  K )
 
Theoremlmodfopnelem2 13415 Lemma 2 for lmodfopne 13416. (Contributed by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( W  e.  LMod  /\  .+  =  .x.  )  ->  (  .0.  e.  V  /\  .1.  e.  V ) )
 
Theoremlmodfopne 13416 The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008.) (Revised by AV, 2-Oct-2021.)
 |- 
 .x.  =  ( .sf `  W )   &    |-  .+  =  ( +f `  W )   &    |-  V  =  ( Base `  W )   &    |-  S  =  (Scalar `  W )   &    |-  K  =  (
 Base `  S )   &    |-  .0.  =  ( 0g `  S )   &    |- 
 .1.  =  ( 1r `  S )   =>    |-  ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  ->  .+  =/=  .x.  )
 
Theoremlcomf 13417 A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .x.  =  ( .s `  W )   &    |-  B  =  ( Base `  W )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  G : I
 --> K )   &    |-  ( ph  ->  H : I --> B )   &    |-  ( ph  ->  I  e.  V )   =>    |-  ( ph  ->  ( G  oF  .x.  H ) : I --> B )
 
Theoremlmodvnegcl 13418 Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( N `  X )  e.  V )
 
Theoremlmodvnegid 13419 Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  N  =  ( invg `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V ) 
 ->  ( X  .+  ( N `  X ) )  =  .0.  )
 
Theoremlmodvneg1 13420 Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  N  =  ( invg `  W )   &    |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  .1.  =  ( 1r `  F )   &    |-  M  =  ( invg `
  F )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( ( M `  .1.  )  .x.  X )  =  ( N `  X ) )
 
Theoremlmodvsneg 13421 Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
 |-  B  =  ( Base `  W )   &    |-  F  =  (Scalar `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( invg `  W )   &    |-  K  =  (
 Base `  F )   &    |-  M  =  ( invg `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  R  e.  K )   =>    |-  ( ph  ->  ( N `  ( R  .x.  X ) )  =  ( ( M `  R )  .x.  X ) )
 
Theoremlmodvsubcl 13422 Closure of vector subtraction. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y )  e.  V )
 
Theoremlmodcom 13423 Left module vector sum is commutative. (Contributed by Gérard Lang, 25-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremlmodabl 13424 A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
 |-  ( W  e.  LMod  ->  W  e.  Abel )
 
Theoremlmodcmn 13425 A left module is a commutative monoid under addition. (Contributed by NM, 7-Jan-2015.)
 |-  ( W  e.  LMod  ->  W  e. CMnd )
 
Theoremlmodnegadd 13426 Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  N  =  ( invg `
  W )   &    |-  R  =  (Scalar `  W )   &    |-  K  =  ( Base `  R )   &    |-  I  =  ( invg `  R )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( N `  ( ( A  .x.  X )  .+  ( B  .x.  Y ) ) )  =  ( ( ( I `
  A )  .x.  X )  .+  ( ( I `  B ) 
 .x.  Y ) ) )
 
Theoremlmod4 13427 Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   =>    |-  ( ( W  e.  LMod  /\  ( X  e.  V  /\  Y  e.  V )  /\  ( Z  e.  V  /\  U  e.  V )
 )  ->  ( ( X  .+  Y )  .+  ( Z  .+  U ) )  =  ( ( X  .+  Z ) 
 .+  ( Y  .+  U ) ) )
 
Theoremlmodvsubadd 13428 Relationship between vector subtraction and addition. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
 )  ->  ( ( A  .-  B )  =  C  <->  ( B  .+  C )  =  A ) )
 
Theoremlmodvaddsub4 13429 Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  ( A  e.  V  /\  B  e.  V ) 
 /\  ( C  e.  V  /\  D  e.  V ) )  ->  ( ( A  .+  B )  =  ( C  .+  D )  <->  ( A  .-  C )  =  ( D  .-  B ) ) )
 
Theoremlmodvpncan 13430 Addition/subtraction cancellation law for vectors. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .+  B )  .-  B )  =  A )
 
Theoremlmodvnpcan 13431 Cancellation law for vector subtraction (Contributed by NM, 19-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .-  B )  .+  B )  =  A )
 
Theoremlmodvsubval2 13432 Value of vector subtraction in terms of addition. (Contributed by NM, 31-Mar-2014.) (Proof shortened by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   &    |-  F  =  (Scalar `  W )   &    |- 
 .x.  =  ( .s `  W )   &    |-  N  =  ( invg `  F )   &    |- 
 .1.  =  ( 1r `  F )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( A  .-  B )  =  ( A  .+  ( ( N `  .1.  )  .x.  B )
 ) )
 
Theoremlmodsubvs 13433 Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
 |-  V  =  ( Base `  W )   &    |-  .+  =  ( +g  `  W )   &    |-  .-  =  ( -g `  W )   &    |-  .x. 
 =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  (
 Base `  F )   &    |-  N  =  ( invg `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( X  .-  ( A  .x.  Y ) )  =  ( X  .+  ( ( N `  A ) 
 .x.  Y ) ) )
 
Theoremlmodsubdi 13434 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .-  =  ( -g `  W )   &    |-  ( ph  ->  W  e.  LMod
 )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  X  e.  V )   &    |-  ( ph  ->  Y  e.  V )   =>    |-  ( ph  ->  ( A  .x.  ( X  .-  Y ) )  =  ( ( A  .x.  X )  .-  ( A  .x.  Y ) ) )
 
Theoremlmodsubdir 13435 Scalar multiplication distributive law for subtraction. (Contributed by NM, 2-Jul-2014.)
 |-  V  =  ( Base `  W )   &    |-  .x.  =  ( .s `  W )   &    |-  F  =  (Scalar `  W )   &    |-  K  =  ( Base `  F )   &    |-  .-  =  ( -g `  W )   &    |-  S  =  ( -g `  F )   &    |-  ( ph  ->  W  e.  LMod )   &    |-  ( ph  ->  A  e.  K )   &    |-  ( ph  ->  B  e.  K )   &    |-  ( ph  ->  X  e.  V )   =>    |-  ( ph  ->  (
 ( A S B )  .x.  X )  =  ( ( A  .x.  X )  .-  ( B  .x.  X ) ) )
 
Theoremlmodsubeq0 13436 If the difference between two vectors is zero, they are equal. (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V  /\  B  e.  V )  ->  ( ( A  .-  B )  =  .0.  <->  A  =  B ) )
 
Theoremlmodsubid 13437 Subtraction of a vector from itself. (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |-  V  =  ( Base `  W )   &    |-  .0.  =  ( 0g `  W )   &    |-  .-  =  ( -g `  W )   =>    |-  ( ( W  e.  LMod  /\  A  e.  V ) 
 ->  ( A  .-  A )  =  .0.  )
 
Theoremlmodprop2d 13438* If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 13439 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  F  =  (Scalar `  K )   &    |-  G  =  (Scalar `  L )   &    |-  ( ph  ->  P  =  ( Base `  F )
 )   &    |-  ( ph  ->  P  =  ( Base `  G )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  P )
 )  ->  ( x ( +g  `  F )
 y )  =  ( x ( +g  `  G ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  P )
 )  ->  ( x ( .r `  F ) y )  =  ( x ( .r `  G ) y ) )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod )
 )
 
Theoremlmodpropd 13439* If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ph  ->  F  =  (Scalar `  K ) )   &    |-  ( ph  ->  F  =  (Scalar `  L ) )   &    |-  P  =  ( Base `  F )   &    |-  ( ( ph  /\  ( x  e.  P  /\  y  e.  B ) )  ->  ( x ( .s `  K ) y )  =  ( x ( .s
 `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  LMod  <->  L  e.  LMod )
 )
 
Theoremrmodislmodlem 13440* Lemma for rmodislmod 13441. This is the part of the proof of rmodislmod 13441 which requires the scalar ring to be commutative. (Contributed by AV, 3-Dec-2021.)
 |-  V  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  F  =  (Scalar `  R )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   &    |-  ( R  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( w  .x.  r )  e.  V  /\  ( ( w  .+  x ) 
 .x.  r )  =  ( ( w  .x.  r )  .+  ( x 
 .x.  r ) ) 
 /\  ( w  .x.  ( q  .+^  r ) )  =  ( ( w  .x.  q )  .+  ( w  .x.  r
 ) ) )  /\  ( ( w  .x.  ( q  .X.  r ) )  =  ( ( w  .x.  q )  .x.  r )  /\  ( w  .x.  .1.  )  =  w ) ) )   &    |-  .*  =  ( s  e.  K ,  v  e.  V  |->  ( v  .x.  s ) )   &    |-  L  =  ( R sSet  <. ( .s
 `  ndx ) ,  .*  >.
 )   =>    |-  ( ( F  e.  CRing  /\  ( a  e.  K  /\  b  e.  K  /\  c  e.  V ) )  ->  ( ( a  .X.  b )  .*  c )  =  ( a  .*  ( b  .*  c ) ) )
 
Theoremrmodislmod 13441* The right module  R induces a left module  L by replacing the scalar multiplication with a reversed multiplication if the scalar ring is commutative. The hypothesis "rmodislmod.r" is a definition of a right module analogous to Definition df-lmod 13379 of a left module, see also islmod 13381. (Contributed by AV, 3-Dec-2021.) (Proof shortened by AV, 18-Oct-2024.)
 |-  V  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .s `  R )   &    |-  F  =  (Scalar `  R )   &    |-  K  =  ( Base `  F )   &    |-  .+^  =  ( +g  `  F )   &    |-  .X.  =  ( .r `  F )   &    |-  .1.  =  ( 1r `  F )   &    |-  ( R  e.  Grp  /\  F  e.  Ring  /\  A. q  e.  K  A. r  e.  K  A. x  e.  V  A. w  e.  V  ( ( ( w  .x.  r )  e.  V  /\  ( ( w  .+  x ) 
 .x.  r )  =  ( ( w  .x.  r )  .+  ( x 
 .x.  r ) ) 
 /\  ( w  .x.  ( q  .+^  r ) )  =  ( ( w  .x.  q )  .+  ( w  .x.  r
 ) ) )  /\  ( ( w  .x.  ( q  .X.  r ) )  =  ( ( w  .x.  q )  .x.  r )  /\  ( w  .x.  .1.  )  =  w ) ) )   &    |-  .*  =  ( s  e.  K ,  v  e.  V  |->  ( v  .x.  s ) )   &    |-  L  =  ( R sSet  <. ( .s
 `  ndx ) ,  .*  >.
 )   =>    |-  ( F  e.  CRing  ->  L  e.  LMod )
 
7.6  The complex numbers as an algebraic extensible structure
 
7.6.1  Definition and basic properties
 
Syntaxcpsmet 13442 Extend class notation with the class of all pseudometric spaces.
 class PsMet
 
Syntaxcxmet 13443 Extend class notation with the class of all extended metric spaces.
 class  *Met
 
Syntaxcmet 13444 Extend class notation with the class of all metrics.
 class  Met
 
Syntaxcbl 13445 Extend class notation with the metric space ball function.
 class  ball
 
Syntaxcfbas 13446 Extend class definition to include the class of filter bases.
 class  fBas
 
Syntaxcfg 13447 Extend class definition to include the filter generating function.
 class  filGen
 
Syntaxcmopn 13448 Extend class notation with a function mapping each metric space to the family of its open sets.
 class  MetOpen
 
Syntaxcmetu 13449 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
 class metUnif
 
Definitiondf-psmet 13450* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  ( (
 y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
 y d z ) 
 <_  ( ( w d y ) +e
 ( w d z ) ) ) }
 )
 
Definitiondf-xmet 13451* Define the set of all extended metrics on a given base set. The definition is similar to df-met 13452, but we also allow the metric to take on the value +oo. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 *Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <->  y  =  z
 )  /\  A. w  e.  x  ( y d z )  <_  (
 ( w d y ) +e ( w d z ) ) ) } )
 
Definitiondf-met 13452* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
 |- 
 Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x ) )  | 
 A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <-> 
 y  =  z ) 
 /\  A. w  e.  x  ( y d z )  <_  ( ( w d y )  +  ( w d z ) ) ) } )
 
Definitiondf-bl 13453* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- 
 ball  =  ( d  e.  _V  |->  ( x  e. 
 dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
 z } ) )
 
Definitiondf-mopn 13454 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
 |-  MetOpen  =  ( d  e. 
 U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
 
Definitiondf-fbas 13455* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |- 
 fBas  =  ( w  e.  _V  |->  { x  e.  ~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
 y  i^i  z )
 )  =/=  (/) ) }
 )
 
Definitiondf-fg 13456* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |-  filGen  =  ( w  e. 
 _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
 
Definitiondf-metu 13457* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- metUnif  =  ( d  e.  U. ran PsMet 
 |->  ( ( dom  dom  d  X.  dom  dom  d )
 filGen ran  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a
 ) ) ) ) )
 
Syntaxccnfld 13458 Extend class notation with the field of complex numbers.
 classfld
 
Definitiondf-icnfld 13459 The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 13461, cnfldadd 13463, cnfldmul 13464, cnfldcj 13465, and cnfldbas 13462.

We may add additional members to this in the future.

At least for now, this structure does not include a topology, order, a distance function, or function mapping metrics.

(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) (New usage is discouraged.)

 |-fld  =  ( { <. ( Base `  ndx ) ,  CC >. ,  <. (
 +g  `  ndx ) ,  +  >. ,  <. ( .r
 `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )
 
Theoremcnfldstr 13460 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld Struct  <. 1 , ; 1 3 >.
 
Theoremcnfldex 13461 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld  e.  _V
 
Theoremcnfldbas 13462 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 CC  =  ( Base ` fld )
 
Theoremcnfldadd 13463 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 +  =  ( +g  ` fld )
 
Theoremcnfldmul 13464 The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 x.  =  ( .r
 ` fld
 )
 
Theoremcnfldcj 13465 The conjugation operation of the field of complex numbers. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-  *  =  ( *r ` fld )
 
Theoremcncrng 13466 The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
 |-fld  e.  CRing
 
Theoremcnring 13467 The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-fld  e.  Ring
 
Theoremcnfld0 13468 Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  0  =  ( 0g
 ` fld
 )
 
Theoremcnfld1 13469 One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  1  =  ( 1r
 ` fld
 )
 
Theoremcnfldneg 13470 The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  ( X  e.  CC  ->  ( ( invg ` fld ) `  X )  =  -u X )
 
Theoremcnfldplusf 13471 The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |- 
 +  =  ( +f ` fld )
 
Theoremcnfldsub 13472 The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |- 
 -  =  ( -g ` fld )
 
Theoremcnfldmulg 13473 The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B ) )
 
Theoremcnfldexp 13474 The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  ( ( A  e.  CC  /\  B  e.  NN0 )  ->  ( B (.g `  (mulGrp ` fld ) ) A )  =  ( A ^ B ) )
 
Theoremcnsubmlem 13475* Lemma for nn0subm 13480 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  0  e.  A   =>    |-  A  e.  (SubMnd ` fld )
 
Theoremcnsubglem 13476* Lemma for cnsubrglem 13477 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  B  e.  A   =>    |-  A  e.  (SubGrp ` fld )
 
Theoremcnsubrglem 13477* Lemma for zsubrg 13478 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |-  ( x  e.  A  ->  x  e.  CC )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  +  y )  e.  A )   &    |-  ( x  e.  A  -> 
 -u x  e.  A )   &    |-  1  e.  A   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x  x.  y )  e.  A )   =>    |-  A  e.  (SubRing ` fld )
 
Theoremzsubrg 13478 The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ  e.  (SubRing ` fld )
 
Theoremgzsubrg 13479 The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.)
 |- 
 ZZ[_i]  e.  (SubRing ` fld )
 
Theoremnn0subm 13480 The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |- 
 NN0  e.  (SubMnd ` fld )
 
Theoremrege0subm 13481 The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  ( 0 [,) +oo )  e.  (SubMnd ` fld )
 
Theoremzsssubrg 13482 The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
 |-  ( R  e.  (SubRing ` fld ) 
 ->  ZZ  C_  R )
 
7.6.2  Ring of integers

According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring  Z." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by  (flds  ZZ ), the field of complex numbers restricted to the integers. In zringring 13486 it is shown that this restriction is a ring, and zringbas 13489 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 13484 of the ring of integers.

Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 13484).

 
Syntaxczring 13483 Extend class notation with the (unital) ring of integers.
 classring
 
Definitiondf-zring 13484 The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.)
 |-ring  =  (flds  ZZ )
 
Theoremzringcrng 13485 The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  CRing
 
Theoremzringring 13486 The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.)
 |-ring  e.  Ring
 
Theoremzringabl 13487 The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.)
 |-ring  e.  Abel
 
Theoremzringgrp 13488 The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.)
 |-ring  e.  Grp
 
Theoremzringbas 13489 The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 ZZ  =  ( Base ` ring )
 
Theoremzringplusg 13490 The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 +  =  ( +g  ` ring )
 
Theoremzringmulg 13491 The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A (.g ` ring ) B )  =  ( A  x.  B ) )
 
Theoremzringmulr 13492 The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |- 
 x.  =  ( .r
 ` ring
 )
 
Theoremzring0 13493 The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  0  =  ( 0g
 ` ring
 )
 
Theoremzring1 13494 The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.)
 |-  1  =  ( 1r
 ` ring
 )
 
Theoremzringnzr 13495 The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.)
 |-ring  e. NzRing
 
Theoremdvdsrzring 13496 Ring divisibility in the ring of integers corresponds to ordinary divisibility in  ZZ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.)
 |-  ||  =  ( ||r ` ring )
 
Theoremzringinvg 13497 The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
 |-  ( A  e.  ZZ  -> 
 -u A  =  ( ( invg ` ring ) `  A ) )
 
Theoremzringsubgval 13498 Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.)
 |-  .-  =  ( -g ` ring )   =>    |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( X  -  Y )  =  ( X  .-  Y ) )
 
Theoremzringmpg 13499 The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.)
 |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
 
PART 8  BASIC TOPOLOGY
 
8.1  Topology
 
8.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
8.1.1.1  Topologies
 
Syntaxctop 13500 Syntax for the class of topologies.
 class  Top
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >