HomeHome Intuitionistic Logic Explorer
Theorem List (p. 135 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13401-13500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremghmeqker 13401 Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.)
 |-  B  =  ( Base `  S )   &    |-  .0.  =  ( 0g `  T )   &    |-  K  =  ( `' F " {  .0.  }
 )   &    |-  .-  =  ( -g `  S )   =>    |-  ( ( F  e.  ( S  GrpHom  T ) 
 /\  U  e.  B  /\  V  e.  B ) 
 ->  ( ( F `  U )  =  ( F `  V )  <->  ( U  .-  V )  e.  K ) )
 
Theoremf1ghm0to0 13402 If a group homomorphism  F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( ( F  e.  ( R  GrpHom  S ) 
 /\  F : A -1-1-> B 
 /\  X  e.  A )  ->  ( ( F `
  X )  =  .0.  <->  X  =  N ) )
 
Theoremghmf1 13403* Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  A. x  e.  A  ( ( F `  x )  =  .0.  ->  x  =  N ) ) )
 
Theoremkerf1ghm 13404 A group homomorphism  F is injective if and only if its kernel is the singleton  { N }. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
 |-  A  =  ( Base `  R )   &    |-  B  =  (
 Base `  S )   &    |-  N  =  ( 0g `  R )   &    |- 
 .0.  =  ( 0g `  S )   =>    |-  ( F  e.  ( R  GrpHom  S )  ->  ( F : A -1-1-> B  <->  ( `' F " {  .0.  } )  =  { N } ) )
 
Theoremghmf1o 13405 A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  S )   &    |-  Y  =  (
 Base `  T )   =>    |-  ( F  e.  ( S  GrpHom  T ) 
 ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T 
 GrpHom  S ) ) )
 
Theoremconjghm 13406* Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  X  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F  e.  ( G  GrpHom  G )  /\  F : X
 -1-1-onto-> X ) )
 
Theoremconjsubg 13407* A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  ran  F  e.  (SubGrp `  G ) )
 
Theoremconjsubgen 13408* A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  ->  S  ~~  ran  F )
 
Theoremconjnmz 13409* A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   &    |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }   =>    |-  (
 ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
 
Theoremconjnmzb 13410* Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   &    |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }   =>    |-  ( S  e.  (SubGrp `  G )  ->  ( A  e.  N 
 <->  ( A  e.  X  /\  S  =  ran  F ) ) )
 
Theoremconjnsg 13411* A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.)
 |-  X  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  F  =  ( x  e.  S  |->  ( ( A 
 .+  x )  .-  A ) )   =>    |-  ( ( S  e.  (NrmSGrp `  G )  /\  A  e.  X )  ->  S  =  ran  F )
 
Theoremqusghm 13412* If  Y is a normal subgroup of  G, then the "natural map" from elements to their cosets is a group homomorphism from  G to  G  /  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.)
 |-  X  =  ( Base `  G )   &    |-  H  =  ( G  /.s  ( G ~QG  Y ) )   &    |-  F  =  ( x  e.  X  |->  [ x ] ( G ~QG  Y ) )   =>    |-  ( Y  e.  (NrmSGrp `  G )  ->  F  e.  ( G  GrpHom  H ) )
 
Theoremghmpropd 13413* Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  J )
 )   &    |-  ( ph  ->  C  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  C  =  ( Base `  M )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  J )
 y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  C  /\  y  e.  C )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  M ) y ) )   =>    |-  ( ph  ->  ( J  GrpHom  K )  =  ( L  GrpHom  M ) )
 
7.2.5  Abelian groups
 
7.2.5.1  Definition and basic properties
 
Syntaxccmn 13414 Extend class notation with class of all commutative monoids.
 class CMnd
 
Syntaxcabl 13415 Extend class notation with class of all Abelian groups.
 class  Abel
 
Definitiondf-cmn 13416* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |- CMnd  =  { g  e.  Mnd  | 
 A. a  e.  ( Base `  g ) A. b  e.  ( Base `  g ) ( a ( +g  `  g
 ) b )  =  ( b ( +g  `  g ) a ) }
 
Definitiondf-abl 13417 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |- 
 Abel  =  ( Grp  i^i CMnd )
 
Theoremisabl 13418 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
 |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  G  e. CMnd ) )
 
Theoremablgrp 13419 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
 |-  ( G  e.  Abel  ->  G  e.  Grp )
 
Theoremablgrpd 13420 An Abelian group is a group, deduction form of ablgrp 13419. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e.  Grp )
 
Theoremablcmn 13421 An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e.  Abel  ->  G  e. CMnd )
 
Theoremablcmnd 13422 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e.  Abel )   =>    |-  ( ph  ->  G  e. CMnd )
 
Theoremiscmn 13423* The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e. CMnd  <->  ( G  e.  Mnd  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  (
 y  .+  x )
 ) )
 
Theoremisabl2 13424* The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( G  e.  Abel  <->  ( G  e.  Grp  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
 
Theoremcmnpropd 13425* If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
 
Theoremablpropd 13426* If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B )
 )  ->  ( x ( +g  `  K )
 y )  =  ( x ( +g  `  L ) y ) )   =>    |-  ( ph  ->  ( K  e.  Abel 
 <->  L  e.  Abel )
 )
 
Theoremablprop 13427 If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
 |-  ( Base `  K )  =  ( Base `  L )   &    |-  ( +g  `  K )  =  ( +g  `  L )   =>    |-  ( K  e.  Abel  <->  L  e.  Abel )
 
Theoremiscmnd 13428* Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
 )  =  ( y 
 .+  x ) )   =>    |-  ( ph  ->  G  e. CMnd )
 
Theoremisabld 13429* Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
 |-  ( ph  ->  B  =  ( Base `  G )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  G )
 )   &    |-  ( ph  ->  G  e.  Grp )   &    |-  ( ( ph  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
 )  =  ( y 
 .+  x ) )   =>    |-  ( ph  ->  G  e.  Abel
 )
 
Theoremisabli 13430* Properties that determine an Abelian group. (Contributed by NM, 4-Sep-2011.)
 |-  G  e.  Grp   &    |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  (
 ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y )  =  (
 y  .+  x )
 )   =>    |-  G  e.  Abel
 
Theoremcmnmnd 13431 A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  ( G  e. CMnd  ->  G  e.  Mnd )
 
Theoremcmncom 13432 A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremablcom 13433 An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
 
Theoremcmn32 13434 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .+  Y ) 
 .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremcmn4 13435 Commutative/associative law for commutative monoids. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( Z 
 .+  W ) )  =  ( ( X 
 .+  Z )  .+  ( Y  .+  W ) ) )
 
Theoremcmn12 13436 Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   =>    |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( X 
 .+  ( Y  .+  Z ) )  =  ( Y  .+  ( X  .+  Z ) ) )
 
Theoremabl32 13437 Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .+  Z )  =  ( ( X  .+  Z )  .+  Y ) )
 
Theoremcmnmndd 13438 A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
 |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  G  e.  Mnd )
 
Theoremrinvmod 13439* Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovimo 6117. (Contributed by AV, 31-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E* w  e.  B  ( A  .+  w )  =  .0.  )
 
Theoremablinvadd 13440 The inverse of an Abelian group operation. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  N  =  ( invg `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  ( X  .+  Y ) )  =  ( ( N `
  X )  .+  ( N `  Y ) ) )
 
Theoremablsub2inv 13441 Abelian group subtraction of two inverses. (Contributed by Stefan O'Rear, 24-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  N  =  ( invg `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  (
 ( N `  X )  .-  ( N `  Y ) )  =  ( Y  .-  X ) )
 
Theoremablsubadd 13442 Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .-  Y )  =  Z  <->  ( Y  .+  Z )  =  X ) )
 
Theoremablsub4 13443 Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B ) 
 /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y ) 
 .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y 
 .-  W ) ) )
 
Theoremabladdsub4 13444 Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B ) 
 /\  ( Z  e.  B  /\  W  e.  B ) )  ->  ( ( X  .+  Y )  =  ( Z  .+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
 
Theoremabladdsub 13445 Associative-type law for group subtraction and addition. (Contributed by NM, 19-Apr-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .-  Z )  =  (
 ( X  .-  Z )  .+  Y ) )
 
Theoremablpncan2 13446 Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  Y )  .-  X )  =  Y )
 
Theoremablpncan3 13447 A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( X  .+  ( Y  .-  X ) )  =  Y )
 
Theoremablsubsub 13448 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X  .-  Y )  .+  Z ) )
 
Theoremablsubsub4 13449 Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  Z )  =  ( X  .-  ( Y  .+  Z ) ) )
 
Theoremablpnpcan 13450 Cancellation law for mixed addition and subtraction. (pnpcan 8265 analog.) (Contributed by NM, 29-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel
 )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .+  Y )  .-  ( X  .+  Z ) )  =  ( Y  .-  Z ) )
 
Theoremablnncan 13451 Cancellation law for group subtraction. (nncan 8255 analog.) (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .-  ( X  .-  Y ) )  =  Y )
 
Theoremablsub32 13452 Swap the second and third terms in a double group subtraction. (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  Z )  =  ( ( X  .-  Z )  .-  Y ) )
 
Theoremablnnncan 13453 Cancellation law for group subtraction. (nnncan 8261 analog.) (Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  ( Y  .-  Z ) ) 
 .-  Z )  =  ( X  .-  Y ) )
 
Theoremablnnncan1 13454 Cancellation law for group subtraction. (nnncan1 8262 analog.) (Contributed by NM, 7-Apr-2015.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  ( ph  ->  G  e.  Abel )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 ( X  .-  Y )  .-  ( X  .-  Z ) )  =  ( Z  .-  Y ) )
 
Theoremablsubsub23 13455 Swap subtrahend and result of group subtraction. (Contributed by NM, 14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
 |-  V  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   =>    |-  ( ( G  e.  Abel  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )  ->  ( ( A  .-  B )  =  C  <->  ( A  .-  C )  =  B ) )
 
Theoremghmfghm 13456* The function fulfilling the conditions of ghmgrp 13248 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Grp )   =>    |-  ( ph  ->  F  e.  ( G  GrpHom  H ) )
 
Theoremghmcmn 13457* The image of a commutative monoid 
G under a group homomorphism  F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e. CMnd )   =>    |-  ( ph  ->  H  e. CMnd )
 
Theoremghmabl 13458* The image of an abelian group  G under a group homomorphism  F is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
 |-  X  =  ( Base `  G )   &    |-  Y  =  (
 Base `  H )   &    |-  .+  =  ( +g  `  G )   &    |-  .+^  =  (
 +g  `  H )   &    |-  (
 ( ph  /\  x  e.  X  /\  y  e.  X )  ->  ( F `  ( x  .+  y ) )  =  ( ( F `  x )  .+^  ( F `
  y ) ) )   &    |-  ( ph  ->  F : X -onto-> Y )   &    |-  ( ph  ->  G  e.  Abel
 )   =>    |-  ( ph  ->  H  e.  Abel )
 
Theoreminvghm 13459 The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
 |-  B  =  ( Base `  G )   &    |-  I  =  ( invg `  G )   =>    |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )
 
Theoremeqgabl 13460 Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  X  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( G  e.  Abel  /\  S  C_  X )  ->  ( A  .~  B  <->  ( A  e.  X  /\  B  e.  X  /\  ( B  .-  A )  e.  S ) ) )
 
Theoremqusecsub 13461 Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
 |-  B  =  ( Base `  G )   &    |-  .-  =  ( -g `  G )   &    |-  .~  =  ( G ~QG  S )   =>    |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) ) 
 /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  =  [ Y ]  .~  <->  ( Y  .-  X )  e.  S ) )
 
Theoremsubgabl 13462 A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
 |-  H  =  ( Gs  S )   =>    |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  ->  H  e.  Abel
 )
 
Theoremsubcmnd 13463 A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 10-Jan-2015.)
 |-  ( ph  ->  H  =  ( Gs  S ) )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  S  e.  V )   =>    |-  ( ph  ->  H  e. CMnd )
 
Theoremablnsg 13464 Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( G  e.  Abel  ->  (NrmSGrp `  G )  =  (SubGrp `  G )
 )
 
Theoremablressid 13465 A commutative group restricted to its base set is a commutative group. It will usually be the original group exactly, of course, but to show that needs additional conditions such as those in strressid 12749. (Contributed by Jim Kingdon, 5-May-2025.)
 |-  B  =  ( Base `  G )   =>    |-  ( G  e.  Abel  ->  ( Gs  B )  e.  Abel )
 
Theoremimasabl 13466* The image structure of an abelian group is an abelian group (imasgrp 13241 analog). (Contributed by AV, 22-Feb-2025.)
 |-  ( ph  ->  U  =  ( F  "s  R )
 )   &    |-  ( ph  ->  V  =  ( Base `  R )
 )   &    |-  ( ph  ->  .+  =  ( +g  `  R )
 )   &    |-  ( ph  ->  F : V -onto-> B )   &    |-  ( ( ph  /\  ( a  e.  V  /\  b  e.  V )  /\  ( p  e.  V  /\  q  e.  V ) )  ->  ( ( ( F `
  a )  =  ( F `  p )  /\  ( F `  b )  =  ( F `  q ) ) 
 ->  ( F `  (
 a  .+  b )
 )  =  ( F `
  ( p  .+  q ) ) ) )   &    |-  ( ph  ->  R  e.  Abel )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ph  ->  ( U  e.  Abel  /\  ( F ` 
 .0.  )  =  ( 0g `  U ) ) )
 
7.2.5.2  Group sum operation
 
Theoremgsumfzreidx 13467 Re-index a finite group sum using a bijection. Corresponds to the first equation in [Lang] p. 5 with  M  =  1. (Contributed by AV, 26-Dec-2023.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   &    |-  ( ph  ->  H : ( M ... N ) -1-1-onto-> ( M ... N ) )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  =  ( G  gsumg  ( F  o.  H ) ) )
 
Theoremgsumfzsubmcl 13468 Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) (Revised by AV, 3-Jun-2019.) (Revised by Jim Kingdon, 30-Aug-2025.)
 |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  S  e.  (SubMnd `  G )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> S )   =>    |-  ( ph  ->  ( G  gsumg 
 F )  e.  S )
 
Theoremgsumfzmptfidmadd 13469* The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.) (Revised by Jim Kingdon, 31-Aug-2025.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( x  e.  ( M ... N )  |->  ( C  .+  D ) ) )  =  ( ( G  gsumg 
 F )  .+  ( G  gsumg 
 H ) ) )
 
Theoremgsumfzmptfidmadd2 13470* The sum of two group sums expressed as mappings with finite domain, using a function operation. (Contributed by AV, 23-Jul-2019.)
 |-  B  =  ( Base `  G )   &    |-  .+  =  ( +g  `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( M
 ... N ) ) 
 ->  C  e.  B )   &    |-  ( ( ph  /\  x  e.  ( M ... N ) )  ->  D  e.  B )   &    |-  F  =  ( x  e.  ( M
 ... N )  |->  C )   &    |-  H  =  ( x  e.  ( M
 ... N )  |->  D )   =>    |-  ( ph  ->  ( G  gsumg  ( F  oF  .+  H ) )  =  ( ( G  gsumg  F ) 
 .+  ( G  gsumg  H ) ) )
 
Theoremgsumfzconst 13471* Sum of a constant series. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Jim Kingdon, 6-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
Theoremgsumfzconstf 13472* Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017.)
 |-  F/_ k X   &    |-  B  =  (
 Base `  G )   &    |-  .x.  =  (.g `  G )   =>    |-  ( ( G  e.  Mnd  /\  N  e.  ( ZZ>= `  M )  /\  X  e.  B )  ->  ( G 
 gsumg  ( k  e.  ( M ... N )  |->  X ) )  =  ( ( ( N  -  M )  +  1
 )  .x.  X )
 )
 
Theoremgsumfzmhm 13473 Apply a monoid homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 8-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ( G MndHom  H )
 )   &    |-  ( ph  ->  F : ( M ... N ) --> B )   =>    |-  ( ph  ->  ( H  gsumg  ( K  o.  F ) )  =  ( K `  ( G  gsumg  F ) ) )
 
Theoremgsumfzmhm2 13474* Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) (Revised by Jim Kingdon, 9-Sep-2025.)
 |-  B  =  ( Base `  G )   &    |-  .0.  =  ( 0g `  G )   &    |-  ( ph  ->  G  e. CMnd )   &    |-  ( ph  ->  H  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( x  e.  B  |->  C )  e.  ( G MndHom  H ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  X  e.  B )   &    |-  ( x  =  X  ->  C  =  D )   &    |-  ( x  =  ( G  gsumg  ( k  e.  ( M ... N )  |->  X ) )  ->  C  =  E )   =>    |-  ( ph  ->  ( H  gsumg  ( k  e.  ( M ... N )  |->  D ) )  =  E )
 
Theoremgsumfzsnfd 13475* Group sum of a singleton, deduction form, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Thierry Arnoux, 28-Mar-2018.) (Revised by AV, 11-Dec-2019.)
 |-  B  =  ( Base `  G )   &    |-  ( ph  ->  G  e.  Mnd )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ( ph  /\  k  =  M ) 
 ->  A  =  C )   &    |-  F/ k ph   &    |-  F/_ k C   =>    |-  ( ph  ->  ( G  gsumg  ( k  e.  { M }  |->  A ) )  =  C )
 
7.3  Rings
 
7.3.1  Multiplicative Group
 
Syntaxcmgp 13476 Multiplicative group.
 class mulGrp
 
Definitiondf-mgp 13477 Define a structure that puts the multiplication operation of a ring in the addition slot. Note that this will not actually be a group for the average ring, or even for a field, but it will be a monoid, and we get a group if we restrict to the elements that have inverses. This allows us to formalize such notions as "the multiplication operation of a ring is a monoid" or "the multiplicative identity" in terms of the identity of a monoid (df-ur 13516). (Contributed by Mario Carneiro, 21-Dec-2014.)
 |- mulGrp  =  ( w  e.  _V  |->  ( w sSet  <. ( +g  ` 
 ndx ) ,  ( .r `  w ) >. ) )
 
Theoremfnmgp 13478 The multiplicative group operator is a function. (Contributed by Mario Carneiro, 11-Mar-2015.)
 |- mulGrp  Fn  _V
 
Theoremmgpvalg 13479 Value of the multiplication group operation. (Contributed by Mario Carneiro, 21-Dec-2014.)
 |-  M  =  (mulGrp `  R )   &    |- 
 .x.  =  ( .r `  R )   =>    |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
 
Theoremmgpplusgg 13480 Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
 |-  M  =  (mulGrp `  R )   &    |- 
 .x.  =  ( .r `  R )   =>    |-  ( R  e.  V  ->  .x.  =  ( +g  `  M ) )
 
Theoremmgpex 13481 Existence of the multiplication group. If  R is known to be a semiring, see srgmgp 13524. (Contributed by Jim Kingdon, 10-Jan-2025.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  V  ->  M  e.  _V )
 
Theoremmgpbasg 13482 Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  V  ->  B  =  ( Base `  M ) )
 
Theoremmgpscag 13483 The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  S  =  (Scalar `  R )   =>    |-  ( R  e.  V  ->  S  =  (Scalar `  M ) )
 
Theoremmgptsetg 13484 Topology component of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   =>    |-  ( R  e.  V  ->  (TopSet `  R )  =  (TopSet `  M )
 )
 
Theoremmgptopng 13485 Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  J  =  ( TopOpen `  R )   =>    |-  ( R  e.  V  ->  J  =  ( TopOpen `  M ) )
 
Theoremmgpdsg 13486 Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  M  =  (mulGrp `  R )   &    |-  B  =  ( dist `  R )   =>    |-  ( R  e.  V  ->  B  =  ( dist `  M ) )
 
Theoremmgpress 13487 Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
 |-  S  =  ( Rs  A )   &    |-  M  =  (mulGrp `  R )   =>    |-  ( ( R  e.  V  /\  A  e.  W )  ->  ( Ms  A )  =  (mulGrp `  S ) )
 
7.3.2  Non-unital rings ("rngs")

According to Wikipedia, "... in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a [unital] ring, without assuming the existence of a multiplicative identity. The term "rng" (pronounced rung) is meant to suggest that it is a "ring" without "i", i.e. without the requirement for an "identity element"." (see https://en.wikipedia.org/wiki/Rng_(algebra), 28-Mar-2025).

 
Syntaxcrng 13488 Extend class notation with class of all non-unital rings.
 class Rng
 
Definitiondf-rng 13489* Define the class of all non-unital rings. A non-unital ring (or rng, or pseudoring) is a set equipped with two everywhere-defined internal operations, whose first one is an additive abelian group operation and the second one is a multiplicative semigroup operation, and where the addition is left- and right-distributive for the multiplication. Definition of a pseudo-ring in section I.8.1 of [BourbakiAlg1] p. 93 or the definition of a ring in part Preliminaries of [Roman] p. 18. As almost always in mathematics, "non-unital" means "not necessarily unital". Therefore, by talking about a ring (in general) or a non-unital ring the "unital" case is always included. In contrast to a unital ring, the commutativity of addition must be postulated and cannot be proven from the other conditions. (Contributed by AV, 6-Jan-2020.)
 |- Rng 
 =  { f  e. 
 Abel  |  ( (mulGrp `  f )  e. Smgrp  /\  [. ( Base `  f )  /  b ]. [. ( +g  `  f )  /  p ].
 [. ( .r `  f )  /  t ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( ( x t ( y p z ) )  =  ( ( x t y ) p ( x t z ) ) 
 /\  ( ( x p y ) t z )  =  ( ( x t z ) p ( y t z ) ) ) ) }
 
Theoremisrng 13490* The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
 |-  B  =  ( Base `  R )   &    |-  G  =  (mulGrp `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e. Rng  <->  ( R  e.  Abel  /\  G  e. Smgrp  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x 
 .x.  ( y  .+  z ) )  =  ( ( x  .x.  y )  .+  ( x 
 .x.  z ) ) 
 /\  ( ( x 
 .+  y )  .x.  z )  =  (
 ( x  .x.  z
 )  .+  ( y  .x.  z ) ) ) ) )
 
Theoremrngabl 13491 A non-unital ring is an (additive) abelian group. (Contributed by AV, 17-Feb-2020.)
 |-  ( R  e. Rng  ->  R  e.  Abel )
 
Theoremrngmgp 13492 A non-unital ring is a semigroup under multiplication. (Contributed by AV, 17-Feb-2020.)
 |-  G  =  (mulGrp `  R )   =>    |-  ( R  e. Rng  ->  G  e. Smgrp )
 
Theoremrngmgpf 13493 Restricted functionality of the multiplicative group on non-unital rings (mgpf 13567 analog). (Contributed by AV, 22-Feb-2025.)
 |-  (mulGrp  |` Rng ) :Rng -->Smgrp
 
Theoremrnggrp 13494 A non-unital ring is a (additive) group. (Contributed by AV, 16-Feb-2025.)
 |-  ( R  e. Rng  ->  R  e.  Grp )
 
Theoremrngass 13495 Associative law for the multiplication operation of a non-unital ring. (Contributed by NM, 27-Aug-2011.) (Revised by AV, 13-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B ) )  ->  ( ( X  .x.  Y )  .x.  Z )  =  ( X  .x.  ( Y  .x.  Z ) ) )
 
Theoremrngdi 13496 Distributive law for the multiplication operation of a non-unital ring (left-distributivity). (Contributed by AV, 14-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( X  .x.  ( Y  .+  Z ) )  =  (
 ( X  .x.  Y )  .+  ( X  .x.  Z ) ) )
 
Theoremrngdir 13497 Distributive law for the multiplication operation of a non-unital ring (right-distributivity). (Contributed by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
 )  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z )  .+  ( Y  .x.  Z ) ) )
 
Theoremrngacl 13498 Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
 
Theoremrng0cl 13499 The zero element of a non-unital ring belongs to its base set. (Contributed by AV, 16-Feb-2025.)
 |-  B  =  ( Base `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e. Rng  ->  .0.  e.  B )
 
Theoremrngcl 13500 Closure of the multiplication operation of a non-unital ring. (Contributed by AV, 17-Apr-2020.)
 |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >