ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssetm Unicode version

Theorem lsssetm 13852
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f  |-  F  =  (Scalar `  W )
lssset.b  |-  B  =  ( Base `  F
)
lssset.v  |-  V  =  ( Base `  W
)
lssset.p  |-  .+  =  ( +g  `  W )
lssset.t  |-  .x.  =  ( .s `  W )
lssset.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssetm  |-  ( W  e.  X  ->  S  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
Distinct variable groups:    .+ , s    x, s, B    V, s    a,
b, s, x, W    .x. , s    j, a, b, s, x
Allowed substitution hints:    B( j, a, b)    .+ ( x, j, a, b)    S( x, j, s, a, b)    .x. ( x, j, a, b)    F( x, j, s, a, b)    V( x, j, a, b)    W( j)    X( x, j, s, a, b)

Proof of Theorem lsssetm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2  |-  S  =  ( LSubSp `  W )
2 df-lssm 13849 . . 3  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
3 fveq2 5554 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lssset.v . . . . . 6  |-  V  =  ( Base `  W
)
53, 4eqtr4di 2244 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3606 . . . 4  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5554 . . . . . . . . 9  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
8 lssset.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
97, 8eqtr4di 2244 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
109fveq2d 5558 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
11 lssset.b . . . . . . 7  |-  B  =  ( Base `  F
)
1210, 11eqtr4di 2244 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  B )
13 fveq2 5554 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 lssset.t . . . . . . . . . . . 12  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2244 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5935 . . . . . . . . . 10  |-  ( w  =  W  ->  (
x ( .s `  w ) a )  =  ( x  .x.  a ) )
1716oveq1d 5933 . . . . . . . . 9  |-  ( w  =  W  ->  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  =  ( ( x  .x.  a ) ( +g  `  w ) b ) )
18 fveq2 5554 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( +g  `  w )  =  ( +g  `  W
) )
19 lssset.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  W )
2018, 19eqtr4di 2244 . . . . . . . . . 10  |-  ( w  =  W  ->  ( +g  `  w )  = 
.+  )
2120oveqd 5935 . . . . . . . . 9  |-  ( w  =  W  ->  (
( x  .x.  a
) ( +g  `  w
) b )  =  ( ( x  .x.  a )  .+  b
) )
2217, 21eqtrd 2226 . . . . . . . 8  |-  ( w  =  W  ->  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  =  ( ( x  .x.  a )  .+  b
) )
2322eleq1d 2262 . . . . . . 7  |-  ( w  =  W  ->  (
( ( x ( .s `  w ) a ) ( +g  `  w ) b )  e.  s  <->  ( (
x  .x.  a )  .+  b )  e.  s ) )
24232ralbidv 2518 . . . . . 6  |-  ( w  =  W  ->  ( A. a  e.  s  A. b  e.  s 
( ( x ( .s `  w ) a ) ( +g  `  w ) b )  e.  s  <->  A. a  e.  s  A. b  e.  s  ( (
x  .x.  a )  .+  b )  e.  s ) )
2512, 24raleqbidv 2706 . . . . 5  |-  ( w  =  W  ->  ( A. x  e.  ( Base `  (Scalar `  w
) ) A. a  e.  s  A. b  e.  s  ( (
x ( .s `  w ) a ) ( +g  `  w
) b )  e.  s  <->  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) )
2625anbi2d 464 . . . 4  |-  ( w  =  W  ->  (
( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s )  <->  ( E. j 
j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) ) )
276, 26rabeqbidv 2755 . . 3  |-  ( w  =  W  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
28 elex 2771 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
29 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
30 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
3130funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
3229, 28, 31sylancr 414 . . . . . 6  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
334, 32eqeltrid 2280 . . . . 5  |-  ( W  e.  X  ->  V  e.  _V )
3433pwexd 4210 . . . 4  |-  ( W  e.  X  ->  ~P V  e.  _V )
35 rabexg 4172 . . . 4  |-  ( ~P V  e.  _V  ->  { s  e.  ~P V  |  ( E. j 
j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) }  e.  _V )
3634, 35syl 14 . . 3  |-  ( W  e.  X  ->  { s  e.  ~P V  | 
( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) }  e.  _V )
372, 27, 28, 36fvmptd3 5651 . 2  |-  ( W  e.  X  ->  ( LSubSp `
 W )  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
381, 37eqtrid 2238 1  |-  ( W  e.  X  ->  S  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760   ~Pcpw 3601    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-lssm 13849
This theorem is referenced by:  islssm  13853  islssmg  13854
  Copyright terms: Public domain W3C validator