| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsssetm | Unicode version | ||
| Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| lssset.f |
|
| lssset.b |
|
| lssset.v |
|
| lssset.p |
|
| lssset.t |
|
| lssset.s |
|
| Ref | Expression |
|---|---|
| lsssetm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.s |
. 2
| |
| 2 | df-lssm 14317 |
. . 3
| |
| 3 | fveq2 5627 |
. . . . . 6
| |
| 4 | lssset.v |
. . . . . 6
| |
| 5 | 3, 4 | eqtr4di 2280 |
. . . . 5
|
| 6 | 5 | pweqd 3654 |
. . . 4
|
| 7 | fveq2 5627 |
. . . . . . . . 9
| |
| 8 | lssset.f |
. . . . . . . . 9
| |
| 9 | 7, 8 | eqtr4di 2280 |
. . . . . . . 8
|
| 10 | 9 | fveq2d 5631 |
. . . . . . 7
|
| 11 | lssset.b |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr4di 2280 |
. . . . . 6
|
| 13 | fveq2 5627 |
. . . . . . . . . . . 12
| |
| 14 | lssset.t |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqtr4di 2280 |
. . . . . . . . . . 11
|
| 16 | 15 | oveqd 6018 |
. . . . . . . . . 10
|
| 17 | 16 | oveq1d 6016 |
. . . . . . . . 9
|
| 18 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 19 | lssset.p |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | eqtr4di 2280 |
. . . . . . . . . 10
|
| 21 | 20 | oveqd 6018 |
. . . . . . . . 9
|
| 22 | 17, 21 | eqtrd 2262 |
. . . . . . . 8
|
| 23 | 22 | eleq1d 2298 |
. . . . . . 7
|
| 24 | 23 | 2ralbidv 2554 |
. . . . . 6
|
| 25 | 12, 24 | raleqbidv 2744 |
. . . . 5
|
| 26 | 25 | anbi2d 464 |
. . . 4
|
| 27 | 6, 26 | rabeqbidv 2794 |
. . 3
|
| 28 | elex 2811 |
. . 3
| |
| 29 | basfn 13091 |
. . . . . . 7
| |
| 30 | funfvex 5644 |
. . . . . . . 8
| |
| 31 | 30 | funfni 5423 |
. . . . . . 7
|
| 32 | 29, 28, 31 | sylancr 414 |
. . . . . 6
|
| 33 | 4, 32 | eqeltrid 2316 |
. . . . 5
|
| 34 | 33 | pwexd 4265 |
. . . 4
|
| 35 | rabexg 4227 |
. . . 4
| |
| 36 | 34, 35 | syl 14 |
. . 3
|
| 37 | 2, 27, 28, 36 | fvmptd3 5728 |
. 2
|
| 38 | 1, 37 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-lssm 14317 |
| This theorem is referenced by: islssm 14321 islssmg 14322 |
| Copyright terms: Public domain | W3C validator |