ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssetm Unicode version

Theorem lsssetm 13672
Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
lssset.f  |-  F  =  (Scalar `  W )
lssset.b  |-  B  =  ( Base `  F
)
lssset.v  |-  V  =  ( Base `  W
)
lssset.p  |-  .+  =  ( +g  `  W )
lssset.t  |-  .x.  =  ( .s `  W )
lssset.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssetm  |-  ( W  e.  X  ->  S  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
Distinct variable groups:    .+ , s    x, s, B    V, s    a,
b, s, x, W    .x. , s    j, a, b, s, x
Allowed substitution hints:    B( j, a, b)    .+ ( x, j, a, b)    S( x, j, s, a, b)    .x. ( x, j, a, b)    F( x, j, s, a, b)    V( x, j, a, b)    W( j)    X( x, j, s, a, b)

Proof of Theorem lsssetm
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lssset.s . 2  |-  S  =  ( LSubSp `  W )
2 df-lssm 13669 . . 3  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
3 fveq2 5534 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
4 lssset.v . . . . . 6  |-  V  =  ( Base `  W
)
53, 4eqtr4di 2240 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  V )
65pweqd 3595 . . . 4  |-  ( w  =  W  ->  ~P ( Base `  w )  =  ~P V )
7 fveq2 5534 . . . . . . . . 9  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
8 lssset.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
97, 8eqtr4di 2240 . . . . . . . 8  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
109fveq2d 5538 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  F )
)
11 lssset.b . . . . . . 7  |-  B  =  ( Base `  F
)
1210, 11eqtr4di 2240 . . . . . 6  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  B )
13 fveq2 5534 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( .s `  w )  =  ( .s `  W
) )
14 lssset.t . . . . . . . . . . . 12  |-  .x.  =  ( .s `  W )
1513, 14eqtr4di 2240 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( .s `  w )  = 
.x.  )
1615oveqd 5913 . . . . . . . . . 10  |-  ( w  =  W  ->  (
x ( .s `  w ) a )  =  ( x  .x.  a ) )
1716oveq1d 5911 . . . . . . . . 9  |-  ( w  =  W  ->  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  =  ( ( x  .x.  a ) ( +g  `  w ) b ) )
18 fveq2 5534 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( +g  `  w )  =  ( +g  `  W
) )
19 lssset.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  W )
2018, 19eqtr4di 2240 . . . . . . . . . 10  |-  ( w  =  W  ->  ( +g  `  w )  = 
.+  )
2120oveqd 5913 . . . . . . . . 9  |-  ( w  =  W  ->  (
( x  .x.  a
) ( +g  `  w
) b )  =  ( ( x  .x.  a )  .+  b
) )
2217, 21eqtrd 2222 . . . . . . . 8  |-  ( w  =  W  ->  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  =  ( ( x  .x.  a )  .+  b
) )
2322eleq1d 2258 . . . . . . 7  |-  ( w  =  W  ->  (
( ( x ( .s `  w ) a ) ( +g  `  w ) b )  e.  s  <->  ( (
x  .x.  a )  .+  b )  e.  s ) )
24232ralbidv 2514 . . . . . 6  |-  ( w  =  W  ->  ( A. a  e.  s  A. b  e.  s 
( ( x ( .s `  w ) a ) ( +g  `  w ) b )  e.  s  <->  A. a  e.  s  A. b  e.  s  ( (
x  .x.  a )  .+  b )  e.  s ) )
2512, 24raleqbidv 2698 . . . . 5  |-  ( w  =  W  ->  ( A. x  e.  ( Base `  (Scalar `  w
) ) A. a  e.  s  A. b  e.  s  ( (
x ( .s `  w ) a ) ( +g  `  w
) b )  e.  s  <->  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) )
2625anbi2d 464 . . . 4  |-  ( w  =  W  ->  (
( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s )  <->  ( E. j 
j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) ) )
276, 26rabeqbidv 2747 . . 3  |-  ( w  =  W  ->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w ) ) A. a  e.  s  A. b  e.  s  (
( x ( .s
`  w ) a ) ( +g  `  w
) b )  e.  s ) }  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
28 elex 2763 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
29 basfn 12570 . . . . . . 7  |-  Base  Fn  _V
30 funfvex 5551 . . . . . . . 8  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
3130funfni 5335 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
3229, 28, 31sylancr 414 . . . . . 6  |-  ( W  e.  X  ->  ( Base `  W )  e. 
_V )
334, 32eqeltrid 2276 . . . . 5  |-  ( W  e.  X  ->  V  e.  _V )
3433pwexd 4199 . . . 4  |-  ( W  e.  X  ->  ~P V  e.  _V )
35 rabexg 4161 . . . 4  |-  ( ~P V  e.  _V  ->  { s  e.  ~P V  |  ( E. j 
j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) }  e.  _V )
3634, 35syl 14 . . 3  |-  ( W  e.  X  ->  { s  e.  ~P V  | 
( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s  (
( x  .x.  a
)  .+  b )  e.  s ) }  e.  _V )
372, 27, 28, 36fvmptd3 5630 . 2  |-  ( W  e.  X  ->  ( LSubSp `
 W )  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
381, 37eqtrid 2234 1  |-  ( W  e.  X  ->  S  =  { s  e.  ~P V  |  ( E. j  j  e.  s  /\  A. x  e.  B  A. a  e.  s  A. b  e.  s 
( ( x  .x.  a )  .+  b
)  e.  s ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   {crab 2472   _Vcvv 2752   ~Pcpw 3590    Fn wfn 5230   ` cfv 5235  (class class class)co 5896   Basecbs 12512   +g cplusg 12589  Scalarcsca 12592   .scvsca 12593   LSubSpclss 13668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-ov 5899  df-inn 8950  df-ndx 12515  df-slot 12516  df-base 12518  df-lssm 13669
This theorem is referenced by:  islssm  13673  islssmg  13674
  Copyright terms: Public domain W3C validator