| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsssetm | Unicode version | ||
| Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| lssset.f |
|
| lssset.b |
|
| lssset.v |
|
| lssset.p |
|
| lssset.t |
|
| lssset.s |
|
| Ref | Expression |
|---|---|
| lsssetm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssset.s |
. 2
| |
| 2 | df-lssm 14115 |
. . 3
| |
| 3 | fveq2 5576 |
. . . . . 6
| |
| 4 | lssset.v |
. . . . . 6
| |
| 5 | 3, 4 | eqtr4di 2256 |
. . . . 5
|
| 6 | 5 | pweqd 3621 |
. . . 4
|
| 7 | fveq2 5576 |
. . . . . . . . 9
| |
| 8 | lssset.f |
. . . . . . . . 9
| |
| 9 | 7, 8 | eqtr4di 2256 |
. . . . . . . 8
|
| 10 | 9 | fveq2d 5580 |
. . . . . . 7
|
| 11 | lssset.b |
. . . . . . 7
| |
| 12 | 10, 11 | eqtr4di 2256 |
. . . . . 6
|
| 13 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 14 | lssset.t |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | eqtr4di 2256 |
. . . . . . . . . . 11
|
| 16 | 15 | oveqd 5961 |
. . . . . . . . . 10
|
| 17 | 16 | oveq1d 5959 |
. . . . . . . . 9
|
| 18 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 19 | lssset.p |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 21 | 20 | oveqd 5961 |
. . . . . . . . 9
|
| 22 | 17, 21 | eqtrd 2238 |
. . . . . . . 8
|
| 23 | 22 | eleq1d 2274 |
. . . . . . 7
|
| 24 | 23 | 2ralbidv 2530 |
. . . . . 6
|
| 25 | 12, 24 | raleqbidv 2718 |
. . . . 5
|
| 26 | 25 | anbi2d 464 |
. . . 4
|
| 27 | 6, 26 | rabeqbidv 2767 |
. . 3
|
| 28 | elex 2783 |
. . 3
| |
| 29 | basfn 12890 |
. . . . . . 7
| |
| 30 | funfvex 5593 |
. . . . . . . 8
| |
| 31 | 30 | funfni 5376 |
. . . . . . 7
|
| 32 | 29, 28, 31 | sylancr 414 |
. . . . . 6
|
| 33 | 4, 32 | eqeltrid 2292 |
. . . . 5
|
| 34 | 33 | pwexd 4225 |
. . . 4
|
| 35 | rabexg 4187 |
. . . 4
| |
| 36 | 34, 35 | syl 14 |
. . 3
|
| 37 | 2, 27, 28, 36 | fvmptd3 5673 |
. 2
|
| 38 | 1, 37 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-lssm 14115 |
| This theorem is referenced by: islssm 14119 islssmg 14120 |
| Copyright terms: Public domain | W3C validator |