| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lsssetm | Unicode version | ||
| Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 15-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| lssset.f | 
 | 
| lssset.b | 
 | 
| lssset.v | 
 | 
| lssset.p | 
 | 
| lssset.t | 
 | 
| lssset.s | 
 | 
| Ref | Expression | 
|---|---|
| lsssetm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lssset.s | 
. 2
 | |
| 2 | df-lssm 13909 | 
. . 3
 | |
| 3 | fveq2 5558 | 
. . . . . 6
 | |
| 4 | lssset.v | 
. . . . . 6
 | |
| 5 | 3, 4 | eqtr4di 2247 | 
. . . . 5
 | 
| 6 | 5 | pweqd 3610 | 
. . . 4
 | 
| 7 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 8 | lssset.f | 
. . . . . . . . 9
 | |
| 9 | 7, 8 | eqtr4di 2247 | 
. . . . . . . 8
 | 
| 10 | 9 | fveq2d 5562 | 
. . . . . . 7
 | 
| 11 | lssset.b | 
. . . . . . 7
 | |
| 12 | 10, 11 | eqtr4di 2247 | 
. . . . . 6
 | 
| 13 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 14 | lssset.t | 
. . . . . . . . . . . 12
 | |
| 15 | 13, 14 | eqtr4di 2247 | 
. . . . . . . . . . 11
 | 
| 16 | 15 | oveqd 5939 | 
. . . . . . . . . 10
 | 
| 17 | 16 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 18 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 19 | lssset.p | 
. . . . . . . . . . 11
 | |
| 20 | 18, 19 | eqtr4di 2247 | 
. . . . . . . . . 10
 | 
| 21 | 20 | oveqd 5939 | 
. . . . . . . . 9
 | 
| 22 | 17, 21 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 23 | 22 | eleq1d 2265 | 
. . . . . . 7
 | 
| 24 | 23 | 2ralbidv 2521 | 
. . . . . 6
 | 
| 25 | 12, 24 | raleqbidv 2709 | 
. . . . 5
 | 
| 26 | 25 | anbi2d 464 | 
. . . 4
 | 
| 27 | 6, 26 | rabeqbidv 2758 | 
. . 3
 | 
| 28 | elex 2774 | 
. . 3
 | |
| 29 | basfn 12736 | 
. . . . . . 7
 | |
| 30 | funfvex 5575 | 
. . . . . . . 8
 | |
| 31 | 30 | funfni 5358 | 
. . . . . . 7
 | 
| 32 | 29, 28, 31 | sylancr 414 | 
. . . . . 6
 | 
| 33 | 4, 32 | eqeltrid 2283 | 
. . . . 5
 | 
| 34 | 33 | pwexd 4214 | 
. . . 4
 | 
| 35 | rabexg 4176 | 
. . . 4
 | |
| 36 | 34, 35 | syl 14 | 
. . 3
 | 
| 37 | 2, 27, 28, 36 | fvmptd3 5655 | 
. 2
 | 
| 38 | 1, 37 | eqtrid 2241 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-ndx 12681 df-slot 12682 df-base 12684 df-lssm 13909 | 
| This theorem is referenced by: islssm 13913 islssmg 13914 | 
| Copyright terms: Public domain | W3C validator |