ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-markov Unicode version

Definition df-markov 7078
Description: A Markov set is one where if a predicate (here represented by a function  f) on that set does not hold (where hold means is equal to  1o) for all elements, then there exists an element where it fails (is equal to  (/)). Generalization of definition 2.5 of [Pierik], p. 9.

In particular,  om  e. Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Assertion
Ref Expression
df-markov  |- Markov  =  {
y  |  A. f
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
Distinct variable group:    x, f, y

Detailed syntax breakdown of Definition df-markov
StepHypRef Expression
1 cmarkov 7077 . 2  class Markov
2 vy . . . . . . 7  setvar  y
32cv 1334 . . . . . 6  class  y
4 c2o 6351 . . . . . 6  class  2o
5 vf . . . . . . 7  setvar  f
65cv 1334 . . . . . 6  class  f
73, 4, 6wf 5163 . . . . 5  wff  f : y --> 2o
8 vx . . . . . . . . . . 11  setvar  x
98cv 1334 . . . . . . . . . 10  class  x
109, 6cfv 5167 . . . . . . . . 9  class  ( f `
 x )
11 c1o 6350 . . . . . . . . 9  class  1o
1210, 11wceq 1335 . . . . . . . 8  wff  ( f `
 x )  =  1o
1312, 8, 3wral 2435 . . . . . . 7  wff  A. x  e.  y  ( f `  x )  =  1o
1413wn 3 . . . . . 6  wff  -.  A. x  e.  y  (
f `  x )  =  1o
15 c0 3394 . . . . . . . 8  class  (/)
1610, 15wceq 1335 . . . . . . 7  wff  ( f `
 x )  =  (/)
1716, 8, 3wrex 2436 . . . . . 6  wff  E. x  e.  y  ( f `  x )  =  (/)
1814, 17wi 4 . . . . 5  wff  ( -. 
A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) )
197, 18wi 4 . . . 4  wff  ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o 
->  E. x  e.  y  ( f `  x
)  =  (/) ) )
2019, 5wal 1333 . . 3  wff  A. f
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )
2120, 2cab 2143 . 2  class  { y  |  A. f ( f : y --> 2o 
->  ( -.  A. x  e.  y  ( f `  x )  =  1o 
->  E. x  e.  y  ( f `  x
)  =  (/) ) ) }
221, 21wceq 1335 1  wff Markov  =  {
y  |  A. f
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
Colors of variables: wff set class
This definition is referenced by:  ismkv  7079
  Copyright terms: Public domain W3C validator