ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-markov GIF version

Definition df-markov 7218
Description: A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Assertion
Ref Expression
df-markov Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Distinct variable group:   𝑥,𝑓,𝑦

Detailed syntax breakdown of Definition df-markov
StepHypRef Expression
1 cmarkov 7217 . 2 class Markov
2 vy . . . . . . 7 setvar 𝑦
32cv 1363 . . . . . 6 class 𝑦
4 c2o 6468 . . . . . 6 class 2o
5 vf . . . . . . 7 setvar 𝑓
65cv 1363 . . . . . 6 class 𝑓
73, 4, 6wf 5254 . . . . 5 wff 𝑓:𝑦⟶2o
8 vx . . . . . . . . . . 11 setvar 𝑥
98cv 1363 . . . . . . . . . 10 class 𝑥
109, 6cfv 5258 . . . . . . . . 9 class (𝑓𝑥)
11 c1o 6467 . . . . . . . . 9 class 1o
1210, 11wceq 1364 . . . . . . . 8 wff (𝑓𝑥) = 1o
1312, 8, 3wral 2475 . . . . . . 7 wff 𝑥𝑦 (𝑓𝑥) = 1o
1413wn 3 . . . . . 6 wff ¬ ∀𝑥𝑦 (𝑓𝑥) = 1o
15 c0 3450 . . . . . . . 8 class
1610, 15wceq 1364 . . . . . . 7 wff (𝑓𝑥) = ∅
1716, 8, 3wrex 2476 . . . . . 6 wff 𝑥𝑦 (𝑓𝑥) = ∅
1814, 17wi 4 . . . . 5 wff (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)
197, 18wi 4 . . . 4 wff (𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2019, 5wal 1362 . . 3 wff 𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2120, 2cab 2182 . 2 class {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
221, 21wceq 1364 1 wff Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Colors of variables: wff set class
This definition is referenced by:  ismkv  7219
  Copyright terms: Public domain W3C validator