ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-markov GIF version

Definition df-markov 7327
Description: A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Assertion
Ref Expression
df-markov Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Distinct variable group:   𝑥,𝑓,𝑦

Detailed syntax breakdown of Definition df-markov
StepHypRef Expression
1 cmarkov 7326 . 2 class Markov
2 vy . . . . . . 7 setvar 𝑦
32cv 1394 . . . . . 6 class 𝑦
4 c2o 6562 . . . . . 6 class 2o
5 vf . . . . . . 7 setvar 𝑓
65cv 1394 . . . . . 6 class 𝑓
73, 4, 6wf 5314 . . . . 5 wff 𝑓:𝑦⟶2o
8 vx . . . . . . . . . . 11 setvar 𝑥
98cv 1394 . . . . . . . . . 10 class 𝑥
109, 6cfv 5318 . . . . . . . . 9 class (𝑓𝑥)
11 c1o 6561 . . . . . . . . 9 class 1o
1210, 11wceq 1395 . . . . . . . 8 wff (𝑓𝑥) = 1o
1312, 8, 3wral 2508 . . . . . . 7 wff 𝑥𝑦 (𝑓𝑥) = 1o
1413wn 3 . . . . . 6 wff ¬ ∀𝑥𝑦 (𝑓𝑥) = 1o
15 c0 3491 . . . . . . . 8 class
1610, 15wceq 1395 . . . . . . 7 wff (𝑓𝑥) = ∅
1716, 8, 3wrex 2509 . . . . . 6 wff 𝑥𝑦 (𝑓𝑥) = ∅
1814, 17wi 4 . . . . 5 wff (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)
197, 18wi 4 . . . 4 wff (𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2019, 5wal 1393 . . 3 wff 𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2120, 2cab 2215 . 2 class {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
221, 21wceq 1395 1 wff Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Colors of variables: wff set class
This definition is referenced by:  ismkv  7328
  Copyright terms: Public domain W3C validator