ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-markov GIF version

Definition df-markov 7287
Description: A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Assertion
Ref Expression
df-markov Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Distinct variable group:   𝑥,𝑓,𝑦

Detailed syntax breakdown of Definition df-markov
StepHypRef Expression
1 cmarkov 7286 . 2 class Markov
2 vy . . . . . . 7 setvar 𝑦
32cv 1374 . . . . . 6 class 𝑦
4 c2o 6526 . . . . . 6 class 2o
5 vf . . . . . . 7 setvar 𝑓
65cv 1374 . . . . . 6 class 𝑓
73, 4, 6wf 5290 . . . . 5 wff 𝑓:𝑦⟶2o
8 vx . . . . . . . . . . 11 setvar 𝑥
98cv 1374 . . . . . . . . . 10 class 𝑥
109, 6cfv 5294 . . . . . . . . 9 class (𝑓𝑥)
11 c1o 6525 . . . . . . . . 9 class 1o
1210, 11wceq 1375 . . . . . . . 8 wff (𝑓𝑥) = 1o
1312, 8, 3wral 2488 . . . . . . 7 wff 𝑥𝑦 (𝑓𝑥) = 1o
1413wn 3 . . . . . 6 wff ¬ ∀𝑥𝑦 (𝑓𝑥) = 1o
15 c0 3471 . . . . . . . 8 class
1610, 15wceq 1375 . . . . . . 7 wff (𝑓𝑥) = ∅
1716, 8, 3wrex 2489 . . . . . 6 wff 𝑥𝑦 (𝑓𝑥) = ∅
1814, 17wi 4 . . . . 5 wff (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)
197, 18wi 4 . . . 4 wff (𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2019, 5wal 1373 . . 3 wff 𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2120, 2cab 2195 . 2 class {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
221, 21wceq 1375 1 wff Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Colors of variables: wff set class
This definition is referenced by:  ismkv  7288
  Copyright terms: Public domain W3C validator