ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-markov GIF version

Definition df-markov 7128
Description: A Markov set is one where if a predicate (here represented by a function 𝑓) on that set does not hold (where hold means is equal to 1o) for all elements, then there exists an element where it fails (is equal to ). Generalization of definition 2.5 of [Pierik], p. 9.

In particular, ω ∈ Markov is known as Markov's Principle (MP). (Contributed by Jim Kingdon, 18-Mar-2023.)

Assertion
Ref Expression
df-markov Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Distinct variable group:   𝑥,𝑓,𝑦

Detailed syntax breakdown of Definition df-markov
StepHypRef Expression
1 cmarkov 7127 . 2 class Markov
2 vy . . . . . . 7 setvar 𝑦
32cv 1347 . . . . . 6 class 𝑦
4 c2o 6389 . . . . . 6 class 2o
5 vf . . . . . . 7 setvar 𝑓
65cv 1347 . . . . . 6 class 𝑓
73, 4, 6wf 5194 . . . . 5 wff 𝑓:𝑦⟶2o
8 vx . . . . . . . . . . 11 setvar 𝑥
98cv 1347 . . . . . . . . . 10 class 𝑥
109, 6cfv 5198 . . . . . . . . 9 class (𝑓𝑥)
11 c1o 6388 . . . . . . . . 9 class 1o
1210, 11wceq 1348 . . . . . . . 8 wff (𝑓𝑥) = 1o
1312, 8, 3wral 2448 . . . . . . 7 wff 𝑥𝑦 (𝑓𝑥) = 1o
1413wn 3 . . . . . 6 wff ¬ ∀𝑥𝑦 (𝑓𝑥) = 1o
15 c0 3414 . . . . . . . 8 class
1610, 15wceq 1348 . . . . . . 7 wff (𝑓𝑥) = ∅
1716, 8, 3wrex 2449 . . . . . 6 wff 𝑥𝑦 (𝑓𝑥) = ∅
1814, 17wi 4 . . . . 5 wff (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅)
197, 18wi 4 . . . 4 wff (𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2019, 5wal 1346 . . 3 wff 𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))
2120, 2cab 2156 . 2 class {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
221, 21wceq 1348 1 wff Markov = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (¬ ∀𝑥𝑦 (𝑓𝑥) = 1o → ∃𝑥𝑦 (𝑓𝑥) = ∅))}
Colors of variables: wff set class
This definition is referenced by:  ismkv  7129
  Copyright terms: Public domain W3C validator