ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkv Unicode version

Theorem ismkv 7212
Description: The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkv  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem ismkv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5387 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 raleq 2690 . . . . . 6  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
32notbid 668 . . . . 5  |-  ( y  =  A  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  <->  -.  A. x  e.  A  ( f `  x )  =  1o ) )
4 rexeq 2691 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  <->  E. x  e.  A  ( f `  x )  =  (/) ) )
53, 4imbi12d 234 . . . 4  |-  ( y  =  A  ->  (
( -.  A. x  e.  y  ( f `  x )  =  1o 
->  E. x  e.  y  ( f `  x
)  =  (/) )  <->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
61, 5imbi12d 234 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )  <->  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
76albidv 1835 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )  <->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
8 df-markov 7211 . 2  |- Markov  =  {
y  |  A. f
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
97, 8elab2g 2907 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   (/)c0 3446   -->wf 5250   ` cfv 5254   1oc1o 6462   2oc2o 6463  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-fn 5257  df-f 5258  df-markov 7211
This theorem is referenced by:  ismkvmap  7213  omnimkv  7215  mkvprop  7217  omniwomnimkv  7226
  Copyright terms: Public domain W3C validator