ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkv Unicode version

Theorem ismkv 6939
Description: The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkv  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem ismkv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5192 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 raleq 2584 . . . . . 6  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
32notbid 633 . . . . 5  |-  ( y  =  A  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  <->  -.  A. x  e.  A  ( f `  x )  =  1o ) )
4 rexeq 2585 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  <->  E. x  e.  A  ( f `  x )  =  (/) ) )
53, 4imbi12d 233 . . . 4  |-  ( y  =  A  ->  (
( -.  A. x  e.  y  ( f `  x )  =  1o 
->  E. x  e.  y  ( f `  x
)  =  (/) )  <->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
61, 5imbi12d 233 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )  <->  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
76albidv 1763 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )  <->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
8 df-markov 6938 . 2  |- Markov  =  {
y  |  A. f
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
97, 8elab2g 2784 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   A.wal 1297    = wceq 1299    e. wcel 1448   A.wral 2375   E.wrex 2376   (/)c0 3310   -->wf 5055   ` cfv 5059   1oc1o 6236   2oc2o 6237  Markovcmarkov 6937
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-fn 5062  df-f 5063  df-markov 6938
This theorem is referenced by:  ismkvmap  6940  omnimkv  6941  mkvprop  6943
  Copyright terms: Public domain W3C validator