ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismkv Unicode version

Theorem ismkv 7145
Description: The predicate of being Markov. (Contributed by Jim Kingdon, 18-Mar-2023.)
Assertion
Ref Expression
ismkv  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem ismkv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5345 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 raleq 2672 . . . . . 6  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
32notbid 667 . . . . 5  |-  ( y  =  A  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  <->  -.  A. x  e.  A  ( f `  x )  =  1o ) )
4 rexeq 2673 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  <->  E. x  e.  A  ( f `  x )  =  (/) ) )
53, 4imbi12d 234 . . . 4  |-  ( y  =  A  ->  (
( -.  A. x  e.  y  ( f `  x )  =  1o 
->  E. x  e.  y  ( f `  x
)  =  (/) )  <->  ( -.  A. x  e.  A  ( f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) )
61, 5imbi12d 234 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )  <->  ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x
)  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
76albidv 1824 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x
)  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) )  <->  A. f
( f : A --> 2o  ->  ( -.  A. x  e.  A  (
f `  x )  =  1o  ->  E. x  e.  A  ( f `  x )  =  (/) ) ) ) )
8 df-markov 7144 . 2  |- Markov  =  {
y  |  A. f
( f : y --> 2o  ->  ( -.  A. x  e.  y  ( f `  x )  =  1o  ->  E. x  e.  y  ( f `  x )  =  (/) ) ) }
97, 8elab2g 2884 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f ( f : A --> 2o  ->  ( -.  A. x  e.  A  ( f `  x )  =  1o 
->  E. x  e.  A  ( f `  x
)  =  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   (/)c0 3422   -->wf 5208   ` cfv 5212   1oc1o 6404   2oc2o 6405  Markovcmarkov 7143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-fn 5215  df-f 5216  df-markov 7144
This theorem is referenced by:  ismkvmap  7146  omnimkv  7148  mkvprop  7150  omniwomnimkv  7159
  Copyright terms: Public domain W3C validator