![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-omni | Unicode version |
Description: An omniscient set is one
where we can decide whether a predicate (here
represented by a function ![]() ![]() ![]()
In particular, |
Ref | Expression |
---|---|
df-omni |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comni 7131 |
. 2
![]() | |
2 | vy |
. . . . . . 7
![]() ![]() | |
3 | 2 | cv 1352 |
. . . . . 6
![]() ![]() |
4 | c2o 6410 |
. . . . . 6
![]() ![]() | |
5 | vf |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1352 |
. . . . . 6
![]() ![]() |
7 | 3, 4, 6 | wf 5212 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
8 | vx |
. . . . . . . . . 10
![]() ![]() | |
9 | 8 | cv 1352 |
. . . . . . . . 9
![]() ![]() |
10 | 9, 6 | cfv 5216 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() |
11 | c0 3422 |
. . . . . . . 8
![]() ![]() | |
12 | 10, 11 | wceq 1353 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12, 8, 3 | wrex 2456 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | c1o 6409 |
. . . . . . . 8
![]() ![]() | |
15 | 10, 14 | wceq 1353 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15, 8, 3 | wral 2455 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 13, 16 | wo 708 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 7, 17 | wi 4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18, 5 | wal 1351 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 19, 2 | cab 2163 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 1, 20 | wceq 1353 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: isomni 7133 |
Copyright terms: Public domain | W3C validator |