ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-omni Unicode version

Definition df-omni 7099
Description: An omniscient set is one where we can decide whether a predicate (here represented by a function  f) holds (is equal to  1o) for all elements or fails to hold (is equal to  (/)) for some element. Definition 3.1 of [Pierik], p. 14.

In particular,  om  e. Omni is known as the Limited Principle of Omniscience (LPO). (Contributed by Jim Kingdon, 28-Jun-2022.)

Assertion
Ref Expression
df-omni  |- Omni  =  {
y  |  A. f
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) ) }
Distinct variable group:    x, f, y

Detailed syntax breakdown of Definition df-omni
StepHypRef Expression
1 comni 7098 . 2  class Omni
2 vy . . . . . . 7  setvar  y
32cv 1342 . . . . . 6  class  y
4 c2o 6378 . . . . . 6  class  2o
5 vf . . . . . . 7  setvar  f
65cv 1342 . . . . . 6  class  f
73, 4, 6wf 5184 . . . . 5  wff  f : y --> 2o
8 vx . . . . . . . . . 10  setvar  x
98cv 1342 . . . . . . . . 9  class  x
109, 6cfv 5188 . . . . . . . 8  class  ( f `
 x )
11 c0 3409 . . . . . . . 8  class  (/)
1210, 11wceq 1343 . . . . . . 7  wff  ( f `
 x )  =  (/)
1312, 8, 3wrex 2445 . . . . . 6  wff  E. x  e.  y  ( f `  x )  =  (/)
14 c1o 6377 . . . . . . . 8  class  1o
1510, 14wceq 1343 . . . . . . 7  wff  ( f `
 x )  =  1o
1615, 8, 3wral 2444 . . . . . 6  wff  A. x  e.  y  ( f `  x )  =  1o
1713, 16wo 698 . . . . 5  wff  ( E. x  e.  y  ( f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o )
187, 17wi 4 . . . 4  wff  ( f : y --> 2o  ->  ( E. x  e.  y  ( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) )
1918, 5wal 1341 . . 3  wff  A. f
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) )
2019, 2cab 2151 . 2  class  { y  |  A. f ( f : y --> 2o 
->  ( E. x  e.  y  ( f `  x )  =  (/)  \/ 
A. x  e.  y  ( f `  x
)  =  1o ) ) }
211, 20wceq 1343 1  wff Omni  =  {
y  |  A. f
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) ) }
Colors of variables: wff set class
This definition is referenced by:  isomni  7100
  Copyright terms: Public domain W3C validator