Detailed syntax breakdown of Definition df-omni
| Step | Hyp | Ref
| Expression |
| 1 | | comni 7243 |
. 2
class
Omni |
| 2 | | vy |
. . . . . . 7
setvar 𝑦 |
| 3 | 2 | cv 1372 |
. . . . . 6
class 𝑦 |
| 4 | | c2o 6503 |
. . . . . 6
class
2o |
| 5 | | vf |
. . . . . . 7
setvar 𝑓 |
| 6 | 5 | cv 1372 |
. . . . . 6
class 𝑓 |
| 7 | 3, 4, 6 | wf 5272 |
. . . . 5
wff 𝑓:𝑦⟶2o |
| 8 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 9 | 8 | cv 1372 |
. . . . . . . . 9
class 𝑥 |
| 10 | 9, 6 | cfv 5276 |
. . . . . . . 8
class (𝑓‘𝑥) |
| 11 | | c0 3461 |
. . . . . . . 8
class
∅ |
| 12 | 10, 11 | wceq 1373 |
. . . . . . 7
wff (𝑓‘𝑥) = ∅ |
| 13 | 12, 8, 3 | wrex 2486 |
. . . . . 6
wff
∃𝑥 ∈
𝑦 (𝑓‘𝑥) = ∅ |
| 14 | | c1o 6502 |
. . . . . . . 8
class
1o |
| 15 | 10, 14 | wceq 1373 |
. . . . . . 7
wff (𝑓‘𝑥) = 1o |
| 16 | 15, 8, 3 | wral 2485 |
. . . . . 6
wff
∀𝑥 ∈
𝑦 (𝑓‘𝑥) = 1o |
| 17 | 13, 16 | wo 710 |
. . . . 5
wff
(∃𝑥 ∈
𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) |
| 18 | 7, 17 | wi 4 |
. . . 4
wff (𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) |
| 19 | 18, 5 | wal 1371 |
. . 3
wff
∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) |
| 20 | 19, 2 | cab 2192 |
. 2
class {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} |
| 21 | 1, 20 | wceq 1373 |
1
wff Omni =
{𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} |