Detailed syntax breakdown of Definition df-omni
| Step | Hyp | Ref
 | Expression | 
| 1 |   | comni 7200 | 
. 2
class
Omni | 
| 2 |   | vy | 
. . . . . . 7
setvar 𝑦 | 
| 3 | 2 | cv 1363 | 
. . . . . 6
class 𝑦 | 
| 4 |   | c2o 6468 | 
. . . . . 6
class
2o | 
| 5 |   | vf | 
. . . . . . 7
setvar 𝑓 | 
| 6 | 5 | cv 1363 | 
. . . . . 6
class 𝑓 | 
| 7 | 3, 4, 6 | wf 5254 | 
. . . . 5
wff 𝑓:𝑦⟶2o | 
| 8 |   | vx | 
. . . . . . . . . 10
setvar 𝑥 | 
| 9 | 8 | cv 1363 | 
. . . . . . . . 9
class 𝑥 | 
| 10 | 9, 6 | cfv 5258 | 
. . . . . . . 8
class (𝑓‘𝑥) | 
| 11 |   | c0 3450 | 
. . . . . . . 8
class
∅ | 
| 12 | 10, 11 | wceq 1364 | 
. . . . . . 7
wff (𝑓‘𝑥) = ∅ | 
| 13 | 12, 8, 3 | wrex 2476 | 
. . . . . 6
wff
∃𝑥 ∈
𝑦 (𝑓‘𝑥) = ∅ | 
| 14 |   | c1o 6467 | 
. . . . . . . 8
class
1o | 
| 15 | 10, 14 | wceq 1364 | 
. . . . . . 7
wff (𝑓‘𝑥) = 1o | 
| 16 | 15, 8, 3 | wral 2475 | 
. . . . . 6
wff
∀𝑥 ∈
𝑦 (𝑓‘𝑥) = 1o | 
| 17 | 13, 16 | wo 709 | 
. . . . 5
wff
(∃𝑥 ∈
𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) | 
| 18 | 7, 17 | wi 4 | 
. . . 4
wff (𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) | 
| 19 | 18, 5 | wal 1362 | 
. . 3
wff
∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)) | 
| 20 | 19, 2 | cab 2182 | 
. 2
class {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} | 
| 21 | 1, 20 | wceq 1364 | 
1
wff Omni =
{𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → (∃𝑥 ∈ 𝑦 (𝑓‘𝑥) = ∅ ∨ ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o))} |