ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isomni Unicode version

Theorem isomni 7152
Description: The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
Assertion
Ref Expression
isomni  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem isomni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5364 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 rexeq 2687 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  <->  E. x  e.  A  ( f `  x )  =  (/) ) )
3 raleq 2686 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
42, 3orbi12d 794 . . . 4  |-  ( y  =  A  ->  (
( E. x  e.  y  ( f `  x )  =  (/)  \/ 
A. x  e.  y  ( f `  x
)  =  1o )  <-> 
( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) )
51, 4imbi12d 234 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) )  <->  ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
65albidv 1835 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) )  <->  A. f
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) ) )
7 df-omni 7151 . 2  |- Omni  =  {
y  |  A. f
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) ) }
86, 7elab2g 2899 1  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   (/)c0 3437   -->wf 5227   ` cfv 5231   1oc1o 6428   2oc2o 6429  Omnicomni 7150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-fn 5234  df-f 5235  df-omni 7151
This theorem is referenced by:  isomnimap  7153  finomni  7156  exmidomniim  7157  exmidomni  7158  omnimkv  7172  omniwomnimkv  7183
  Copyright terms: Public domain W3C validator