ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isomni Unicode version

Theorem isomni 7112
Description: The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.)
Assertion
Ref Expression
isomni  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
Distinct variable group:    A, f, x
Allowed substitution hints:    V( x, f)

Proof of Theorem isomni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 feq2 5331 . . . 4  |-  ( y  =  A  ->  (
f : y --> 2o  <->  f : A --> 2o ) )
2 rexeq 2666 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  <->  E. x  e.  A  ( f `  x )  =  (/) ) )
3 raleq 2665 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  y 
( f `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1o ) )
42, 3orbi12d 788 . . . 4  |-  ( y  =  A  ->  (
( E. x  e.  y  ( f `  x )  =  (/)  \/ 
A. x  e.  y  ( f `  x
)  =  1o )  <-> 
( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) )
51, 4imbi12d 233 . . 3  |-  ( y  =  A  ->  (
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) )  <->  ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
65albidv 1817 . 2  |-  ( y  =  A  ->  ( A. f ( f : y --> 2o  ->  ( E. x  e.  y 
( f `  x
)  =  (/)  \/  A. x  e.  y  (
f `  x )  =  1o ) )  <->  A. f
( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x )  =  (/)  \/ 
A. x  e.  A  ( f `  x
)  =  1o ) ) ) )
7 df-omni 7111 . 2  |- Omni  =  {
y  |  A. f
( f : y --> 2o  ->  ( E. x  e.  y  (
f `  x )  =  (/)  \/  A. x  e.  y  ( f `  x )  =  1o ) ) }
86, 7elab2g 2877 1  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f ( f : A --> 2o  ->  ( E. x  e.  A  ( f `  x
)  =  (/)  \/  A. x  e.  A  (
f `  x )  =  1o ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 703   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   (/)c0 3414   -->wf 5194   ` cfv 5198   1oc1o 6388   2oc2o 6389  Omnicomni 7110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-fn 5201  df-f 5202  df-omni 7111
This theorem is referenced by:  isomnimap  7113  finomni  7116  exmidomniim  7117  exmidomni  7118  omnimkv  7132  omniwomnimkv  7143
  Copyright terms: Public domain W3C validator