| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isomni | Unicode version | ||
| Description: The predicate of being omniscient. (Contributed by Jim Kingdon, 28-Jun-2022.) |
| Ref | Expression |
|---|---|
| isomni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 5456 |
. . . 4
| |
| 2 | rexeq 2729 |
. . . . 5
| |
| 3 | raleq 2728 |
. . . . 5
| |
| 4 | 2, 3 | orbi12d 798 |
. . . 4
|
| 5 | 1, 4 | imbi12d 234 |
. . 3
|
| 6 | 5 | albidv 1870 |
. 2
|
| 7 | df-omni 7298 |
. 2
| |
| 8 | 6, 7 | elab2g 2950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-fn 5320 df-f 5321 df-omni 7298 |
| This theorem is referenced by: isomnimap 7300 finomni 7303 exmidomniim 7304 exmidomni 7305 omnimkv 7319 omniwomnimkv 7330 nninfctlemfo 12556 |
| Copyright terms: Public domain | W3C validator |