ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pnf Unicode version

Definition df-pnf 7897
Description: Define plus infinity. Note that the definition is arbitrary, requiring only that +oo be a set not in  RR and different from -oo (df-mnf 7898). We use  ~P
U. CC to make it independent of the construction of  CC, and Cantor's Theorem will show that it is different from any member of 
CC and therefore  RR. See pnfnre 7902 and mnfnre 7903, and we'll also be able to prove +oo  =/= -oo.

A simpler possibility is to define +oo as  CC and -oo as  { CC }, but that approach requires the Axiom of Regularity to show that +oo and -oo are different from each other and from all members of  RR. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.)

Assertion
Ref Expression
df-pnf  |- +oo  =  ~P U. CC

Detailed syntax breakdown of Definition df-pnf
StepHypRef Expression
1 cpnf 7892 . 2  class +oo
2 cc 7713 . . . 4  class  CC
32cuni 3772 . . 3  class  U. CC
43cpw 3543 . 2  class  ~P U. CC
51, 4wceq 1335 1  wff +oo  =  ~P U. CC
Colors of variables: wff set class
This definition is referenced by:  pnfnre  7902  mnfnre  7903  pnfxr  7913
  Copyright terms: Public domain W3C validator